I) If events A and B are independent, then events \bar{A} and B are independent, and events \bar{A} and \bar{B} are also independent.

Proof. By definition, A and B independent $\iff P(A \cap B) = P(A)P(B)$. But $B = (A \cap B) + (\bar{A} \cup B)$, so $P(B) = P(A \cap B) + P(\bar{A} \cup B)$, which yields $P(\bar{A} \cap B) = P(B) - P(A \cap B) = P(B) - P(A)P(B) = P(B)[1 - P(A)] = P(B)P(\bar{A})$. Repeat the argument for the events \bar{A} and \bar{B}, this time starting from the statement that \bar{A} and B are independent and taking the complement of B. \qed

II) If $A \subset B$, $P(A) = 1/4$, and $P(B) = 1/3$, find $P(A | B)$ and $P(B | A)$.

Proof. (solution) If $A \subset B$, then $A \cap B = A$. Then, using the definition, $P(A | B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)}{P(B)} = \frac{3}{4}$. Then also $P(B | A) = \frac{P(A)}{P(A)} = 1$. \qed

III) Three events A_j, $j = 1, 2, 3$ are called independent if

1. the are independent in pairs $P(A_j \cap A_l) = P(A_j)P(A_l)$ for any $j \neq l$

2. and $P(A_1 \cap A_2 \cap A_3) = P(A_1)P(A_2)P(A_3)$.

(Caution: 3 events might be independent in pairs but not independent), Show that

1: Any one event is independent of the intersection of the other two.

Proof. If events A_j, $j = 1, 2, 3$ are independent, by condition 2) in the definition above $P(A_1 \cap A_2 \cap A_3) = P(A_1)P(A_2)P(A_3)$. Also, by condition 1) in the definition above, for example $P(A_1)P(A_2) = P(A_1 \cap A_2)$ so the right-hand side can be written as $P(A_1 \cap A_2 \cap A_3) = P(A_1 \cap A_2)P(A_3)$. Denote $B = (A_1 \cap A_2)$. Then $P[(A_1 \cap A_2) \cap A_3] = P(B \cap A_3) = P(B)P(A_3)$, so $B = (A_1 \cap A_2)$ and A_3 are independent. \qed

2: Replacing one or more of these events with complements the resulting three events are still independent.
Proof. Replace for example $A_3 \mapsto \bar{A}_3$. From Exercise 1, we know that the complement of any of the events is independent of the rest of the two events. This takes care of Condition 1 in the 3-event mutual independence. We have to show that Condition 2 is also satisfied, that is,

$$P(A_1 \cap A_2 \cap \bar{A}_3) = P(A_1)P(A_2)P(\bar{A}_3).$$

Denote $B = A_1 \cap A_2$ and partition it using A_3,

$$B = (B \cap A_3) + (B \cap \bar{A}_3),$$

Using the additivity of probability, thsi means that

$$P(B) = P(B \cap A_3) + P(B \cap \bar{A}_3),$$

that is

$$P(B \cap \bar{A}_3) = P(B) - P(B \cap A_3),$$

Replacing $B = A_1 \cap A_2$ and with $A_j, j = 1, 2, 3$ are independent, yields

$$P(A_1 \cap A_2 \cap \bar{A}_3) = P(A_1 \cap A_2) - P(A_1 \cap A_2 \cap A_3) = P(A_1 \cap A_2) - P(A_1 \cap A_2)P(A_3),$$

or

$$P(A_1 \cap A_2 \cap \bar{A}_3) = P(A_1 \cap A_2) - P(A_1 \cap A_2)P(A_3) = P(A_1 \cap A_2) [1 - P(A_3)].$$

Hence

$$P(A_1 \cap A_2 \cap \bar{A}_3) = P(A_1 \cap A_2)P(\bar{A}_3) = P(A_1)P(A_2)P(\bar{A}_3).$$

□

IV) (Total Probability) Show that if the events $A_j, j = 1, 2, \ldots, N$ are a partition of the probability space S, i.e.

1. they are mutually exclusive, $A_j \cap A_l = \emptyset$ for any $j \neq l$
2. their union is the entire space, $\bigcup_{j=1}^N A_j = S$,

then the probability of an event B may be written as

$$P(B) = P(B \mid A_1)P(A_1) + P(B \mid A_2)P(A_2) + \ldots + P(B \mid A_N)P(A_N).$$
Proof. We have seen that if \(A \subset S \), the sets \(A \) and \(\bar{A} \) form a partition of \(S \), \(S = A + \bar{A} \), and in addition, any set \(B \) can be partitioned into

\[
B = (B \cap A_1) + (B \cap \bar{A}).
\]

This can be generalized for any partition of \(S \); if \(A_j, j = 1, 2, \ldots, N \) are a partition of \(S \),

\[
B = (B \cap A_1) + (B \cap A_2) + \ldots + (B \cap A_N).
\]

This is intuitively true: the sets \(A_j, j = 1, 2, \ldots, N \) cover the entire space and \(B \) will be expressed as a union of its intersections with \(A_j, j = 1, 2, \ldots, N \). Since \(A_j, j = 1, 2, \ldots, N \) are disjoint, the intersections with \(B \) are also disjoint, hence the result.

Applying the additivity property of probability yields

\[
P(B) = P(B \cap A_1) + P(B \cap A_2) + \ldots + P(B \cap A_N).
\]

From the definition of conditional probability,

\[
P(B | A_1) = \frac{P(B \cap A_1)}{P(A_1)} \Rightarrow P(B \cap A_1) = P(B | A_1) P(A_1),
\]

hence the result.

(A bit more convincing – not necessary for the homework), to show that if \(A_j, j = 1, 2, \ldots, N \) are a partition of \(S \),

\[
B = (B \cap A_1) + (B \cap A_2) + \ldots + (B \cap A_N),
\]

we need to show that

1) \(B \subset (B \cap A_1) + (B \cap A_2) + \ldots + (B \cap A_N) \), and

2) \((B \cap A_1) + (B \cap A_2) + \ldots + (B \cap A_N) \subset B \).

Obviously, \(B \cap A_j, j = 1, 2, \ldots, N \) are mutually exclusive (disjoint).

1. Assume that \(\zeta \in B \subset S \) (\(\zeta \) is an element of \(B \), \(B \) is a subset of \(S \)). Then \(\zeta \in S \), but since \(A_j, j = 1, 2, \ldots, N \) are a partition of \(S \), \(\zeta \) must be in one of them, i.e. there is a \(j \) such that that \(\zeta \in A_j \). Hence there is a \(j \) such that \(\zeta \in B \cap A_j \).

2. Reciprocally, assume that \(\zeta \in (B \cap A_1) + (B \cap A_2) + \ldots + (B \cap A_N) \). Since \(B \cap A_j \), \(j = 1, 2, \ldots, N \) are mutually exclusive (disjoint) there is a \(j \) such that \(\zeta \in B \cap A_j \). This means that \(\zeta \in B \). \qed

V) Show that a set \(S \) with \(n \) elements has \(2^n \) subsets and

\[
\frac{n(n-1)\ldots(n-k+1)}{1\cdot2\cdot\ldots\cdot k} = \frac{n!}{k!(n-k)!}
\]

subsets with \(k \) elements.
Proof. 1. The easiest way to show this is by induction. Start with a set with \(n = 1 \) elements, \(S_1 = \{\zeta_1\} \). The subsets are listed below and their number is indeed \(2^1 \).

\[
\emptyset \quad \{\zeta_1\}.
\]

Now let \(S_2 = \{\zeta_1, \zeta_2\} \) have \(n = 2 \) elements. Its subsets are indeed 4, as shown below:

\[
\emptyset \quad \{\zeta_1\} \quad \{\zeta_2\} \quad \{\zeta_1, \zeta_2\}.
\]

Notice that the subsets are formed from the subsets of \(S = \{\zeta_1\} \), by “adding” the new element. The subsets of \(S_1 = \{\zeta_1\} \) in the first row are , the second row are

\[
\emptyset \quad \{\zeta_1\} \quad \{\zeta_2\} \quad \{\zeta_1, \zeta_2\}.
\]

The number of subsets doubles. In general, \(S_{n+1} = S_n \cup \{\zeta_{n+1}\} \), so the subsets of \(S_{n+1} \) contain all the subsets of \(S_n \) plus all the “new” subsets, which contain also the element \(\zeta_{n+1} \), formed by the union of any of the subsets of \(S_n \) with the set \(\{\zeta_{n+1}\} \). Hence the number of subsets of \(S_{n+1} \) is \(2^n + 2^n = 2 \cdot 2^n = 2^{n+1} \). \(\square \)