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An extension of the integral method was made to model the case of
injection into a two-layer system of aquifers with injection into the
top of the Tower layer. An alternating direction implicit (ADI) fiﬁife-
difference model was developed to solve the equations describing this
system. The need for small time steps for model convergence and the
rapid stabilization of the drawdowns led to the alternative use of an
analytical method (the Hantush equation for leaky aquifers)_to calculate
drawdowns and drastically reduce computer time.

Attempts were made to fit the model to data from injection wells in
Pinellas County, Florida. Data from the injection tests are sparse and
of questionable quality; however the basic extent of the injected water
field was reproduced fairly well. Neglect of vertical flows in the well
region may be of importance here. . The complicated system here, with
saltwater both above and below the injected water, makes it difficult to

estimate well concentrations currently.
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The model developed in this work produces a tool for analysis of
injections of wastes which should prove useful for preliminary assess-
ments. Work should continue to further the development and test against

other data.
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CHAPTER 1
INTRODUCTION

Description of Problem

Many coastal areas have density-stratified, artesian groundwater
fields due to underlying saltwater and overlying freshwater, all held in
a series of aquifers and semi-confining beds. In recent years, these
saline aquifers have been used in deep injection disposal of treated
sewage and industrial waste. Potential benefits or hazards to ground-
water resources could result from this practice.

Treated freshwater sewage could possibly be injected into coastal
areas in an effort to stop the landward movement of saltwater intrusion.
This also provides a convenient method of disposing of treated sewage.
Also, surface runoff and excess potable surface water could be injecfed
into a saline aquifer during rainy seasons ahd periods of excess surface
water. Later, during dry periods with little réinfa]], the previously
injected water would be pumped from the aquifer for potable use. This
practice may prove beneficial in many coastal areas of Florida where
saltwater intrusion has currently eliminated groundwaterbas a potable
water resource.

There are also potential hazards associated with deep-well injec—
tion. This is a management technique where the technology is still véfy
young and the long-term effects of injecting pollutants into aﬁ aquifer

are still not well known.
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Experts in this field still feel that they are working in an
unkncwn area when they pump pollutants into an aquifer. In aquifers of
low permeability, where water velocities are very low, undesirable
changes to an aquifer due to injection may go undetected until the
damage is already extensive. Also, in aquifers of low permeability, any
changes may be essentially "irreversible", making it impossible to undo
any undesirable effects of pollutant injection within a reasonable time.

Today, in Florida, there are over fifty injection wells that are
owned and operated by municipé] water treatment plants, power plants,
industrial plants, and agricultural cooperatives. The majority of
injection wells 1in Florida are used for disposal of sanitary sewage.
There are also numerous gravity-driven drainage wells in Florida. With
these wells in existence and with the increasing popularity of injection
disposal of waste, the risk of extensive damage to potable water aqui-
fers 1increases. If migration of pollutants is not anticipated cor-
rectly, the po]lutaﬁts could appear in areas'where they are undesirable.

It has Tong been recognized that -a tool is needed to predict the
effects of injecting a light fluid into a heavier fluid. It 1is the
objective of this work to discuss several modeling methods available and
to develop one or more of these techniques for use by persons involved
in deep-well injection.

The goal is to develop a numerical, or semi-numerical, scheme for
the prediction of effects of an inje;tion well, or a series of injection:
wells, on an aquifer. It is desired to create such a program that would
be usable by consuiting firms and regulatory agencies; to'this end;'it )
is desired that the computer capacity requirements are small enough that

modeling could take place on a micro-computer. This would put advanced



modeling techniques within the grasp of persons previously not able to
utilize them. It is important to realize that such technology may be
misused by persons who do not understand the physical backgraound of the
model and its limitations. For this reason, a complete description of

the model development has been included in this thesis.

Methodology

To develop a usable model of an injection well in a salt-water
aquifer it will first be necessary to review the existing groundwater
modeling 1iteratureﬁ There is much information about the saltwater
intrusion problem, which 1is analogous to the injection situation.
Unfortunately, even most current stratified groundwater-flow models make
the simplifying assumption of a sharp interface between the fresnwater
and saltwater. The actual change from fresh to saltwater occurs through
a transition zone of varying density and salt concentration. It is
desirable to locate the transition zone and use it to ca1cu1dte'sa1t
concentrations -within the pumping region.

Benedict, Rubin, and Means [1983] developed a three-dimensional
saltwater upconing model that accounted for the transition zone using an
integral technique. This model could be modified and the theory
extended to simulate the injection problem. Although this model uses
much 1ess computer time than Tlarge-scale numerical models, several
simplifying assumptions, based on analysis of the basic equations, could
be made to further reduce its run-time cost. It has been‘observed that
in the upconing model there are some numerical prob]em§ encountered in
the transition zone calculations (see Chapter 5). These and other
problems must be worked out before a modification of the upconing model

could be considered.



Once a model has been deye]oped, it will be neceassary to compare
its output to actual injection well field-data. Suitable data has been
obtained from a U.S. Geological Survey report on several injection wells
in the Pinellas County, Florida area.

Once the validity of the model has been verified, the model will be
tested to estab]fsh Timits for numerical convergence and stability, as
well as model sensitivity to 1npﬁt parameters, as well as defining
Timits of model applicability. The final model should provide a useful
tool for assessment of injection well impact, while at the same time

being of a scale and cost as to be useful to many professionals.



CHAPTER 2
LITERATURE REVIEW

Introduction

In this chapter a review will be made of available literature
covering stratified groundwater flow as it applies to the injection
situation. Injection of freshwater into a saltwater aquifer is a pheno-
menon that 1is somewhat analogous to that of saline intrusion due to
pumping. For this reason, and because there is less specific informa-
tion available about injection modeling, part of the Tliterature review

will be of the saltwater .intrusion situation.

Magnitude of Problem

Injection wells have been of interest in this country for years.
They have been conceived as a mz2ans of waste disposal; as a means of
recharging aquifers; as a means of increasing Tlocal potentiometric
heads, thereby reducing potential for saltwater intrusion; or as some
combination of these. Of particular concern is Florida, where the large
coastal region offers many possibilities for injection into saline
regions. He}p]ing [1980] noted that in 1980 at least ninety-one injec-
tion wells were being considered, planned, orv were 1in operation in
ﬁ1orida. CHoM Hi11 [1983] lists a large number of such sites, prdbabfyb
representing about 75 percent of existing injection sites in Florida.
Table 2.1 Tlists wells in Florida to give an indication of the types of

injection wells existing.
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Table 2.1 Some injection wells in the State of Florida
Number of Wells, Well
(Diameter) Depth Year
Location Injection Monitor  (ft) Completed Remarks
Sugar Cane Growers Coopera- 2 (8") 1 (6") 2,000 1966 Operated 1966-76
tive of Florida Superceded by wells for The Quaker
Oats Co. (See listing below)
Industrial effluent
General Waterworks Corpora- 2 (16") - 3,100 1970 Sunset Park & Kendale
tion Lakes Operating since 1971 in Dade Co.
1971 Secondary treated sanitary effluent
Replaced by Miami-Dade Water and Sewer
Authority system February 1983 (See
listing below)
American Cyanamid 1 (6") - 1,547 1971 Santa Rosa Plant
: _ Test well for industrial effluent
The Quaker Oats Company 3 (10") 3 (6") 3,300 1977 Operating since 1978 Industrial
effluent
City of Margate 1 (24") 1 (9-5/8") 3,200 1974 Operating since 1974
‘ _ Secondary treated sanitary effluent
Florida Power & Light Co. 1 (12") - 1,500 1974 Willow Plant
_ ' Exploratory well Underground storage
Florida Power & Light Co. 1 (12") - 1,600 1974 Palatka Plant :
_ _ Exploratory well Industrial effluent
City of Sarasota 1 (16") - 3,000 1974 Exploratory well
‘ Secondary treated sanitary effluent
City of Stuart 1 (16") 1 (8") 1975 = Secondary treated sanitary effluent

- 3,000



Table 2.1--continued

Number of Wells, Well
(Diameter) Depth Year
Location Injection HMonitor  (ft) Completed Remarks
City of Gainesville 4 (30") 10 (4")800'-1,000 1976 Operating since 1976
Advanced treated sanitary effluent
City of St. Petersburg 3 (16") b (8") 1,000 1977 S.W. Plant
Operating since 1977
Secondary treated sanitary effluent
with filtration
City of St. Petersburg 3 (20") 5 (8") 1,000 1978 N.E. Plant
: Operating since 1980
Secondary treated sanitary effluent
with filtration
City of St. Petersburg 2 (20") 1 (6") - - N.W. Plant
' Design completed-construction scheduled
for 1983
Secondary treated sanitary effluent
with filtration
Hercules, Inc. 1 (10") 1 (6") 3,005 1979 Operating since 1979
Industrial effluent
Miami-Dade Water and Sewer 8 (24" 3 (6") 3,100 1981 South District Plant
Authority (MDWSA) 1 (20") 3,100 1981 Secondary treated sanitary effluent
General Development 1 (12") 1 (6") 3,400 1983 Port St. Lucie
UtiTities Secondary treated sanitary effluent
City of Sunrise 2 (24") 1 (6") 3,200 1984 Secondary treated sanitary effluent




Analytical Studies

An analytical technique for calculating the shape of a sharp,
fresh-saline water interface was developed by Ghyben [Ghyben 1888] and
Herzbery [Herzberg 1901]. The Ghyben-Herzberg relationship assumes
horizontal streamlines 1in the freshwater and no movement 1in the
saltwater, It has been widely applied to problems where vertical
movement of the freshwater caa be neglected. The Ghyben-Herzberg
relationship uses a hydrostatic balance to show that the saltwater-
freshwater interface is located at a depth below sea level approximately
forty times that of the corresponding height of freshwatar above sea

level. Specifically, the relation is developed that

s P f
= .1
i
in which
he = height of freshwater above sea level
he = depth of salt-fresh interface below sea level at the same
location

Pg, pg = density of salt and freshwater, respectively.

Since the density of sea water is typically about 1.025 times that
of freshwater, Equation 2.1 suggests hg = 40hg. This also leads to the
conclusion that decreasing the freshwater head by a unit value causes a
resulting saltwater interface rise of about 40 units.

Hubbert [1940], among others, has shown that where streamline
curvature is pronounced, Equation 2.1 gives values somewhat 1in error;
however, the Ghyben-Herzberg relation still provides é useful pofnt‘of»
reference.

The actual change from fresh to saltwater occurs through a

transition zone of varying density and salt concentration. Bear [1979]



notes that the extent of the transition zone is dependent on Tlocal
conditions. He shows data from Kohout [1960] and Israel showing
extensive and small transition zones, respectively. One expects that
interfacial mixing and dispersion, existing in a given region, will
determine the transition zone characteristics. These mixing features

re in turn controlled by pumping rates, existing groundwater flows, and
aquifer characteristics. As Bear [1979] notes, even when the assumption
of a sharp interface is reasonable valid, a transition zone exists.

If the scale of the overlying freshwater lens is large with respect
to the transition zone, it may be reasonable to assume that there is a
sharp interface séparating the freéh and saltwater. Studies along this
line were done by Hantush [1968] and Dagan and Bear [1968].

Bear [1979] summarizes these and other sharp-interface approxima-
tions. Strack [1976] utilized a single harmonic potential to define
interface movement inland due to pumping. Many sharp interface studies
attempt only two-dimensional approaches, simu]ating a line of wells
parallel to the coast. Only a few deal with the three-dimensicnal field
around single wells or overlapping fields of wells. As an example,
Muskat and Wychoff [1935] presented a model attempting to account for
partial penetration of a pumping well by superposition of sinks.

Using the sharp interface assumption, traditional groundwater flow
theory can be appiied to both sides of the sharp interfa;e bétween the
fresh and saltwaﬁer, thus simpTifyihg the calculation. However, in such
calculations, salinity dispersion is neglected, and there is no dfrect
method of estihatihg its effect onzthe dynamics of the f]ow and éa]fﬁity

distribution.



In more recent studies the effects of salinity dispersion at the
interface are accounted for. Dagan [1971] formulated the equation of
dispersion for a neutrally buoyant tracer in a steady flow by applying a
coordinate system based on the potential and the stream function
[Bachmat and Bear, 1964]. Then, by applying singular perturbations as
suggested by MWooding [1963; 1964] they analyzed the migration of a
tracer being initially tangent or nontangent to a streamline. In a
later study Eldor and Dagan [1972] extended the analysis to include
radioactive decay and absorption.

Gelhar and Collins [1971] applied a boundary layer approximation to
develop general solutions for one-dimensional problems involving
longitudinal despersion of neutrally buoyant tracers in porous media.

Koh [1964] and List [1965; 1968] analyzed the problem of flow
induced by axially symmetric and two-dimensional sinks in a stratified
flow through a porous medium. They showed that boundary layer
approximations can be applied for the simulation of flow conditions in
the aquifer.

Rubin and Pinder [1977], wutilizing a perturbation technique,
studied the effect of salinity dispersion on the dynamics of groundwater
flow as well as on the salinity distribution in a porous medium. The
phencmenon is described as a migration of a sharp interface perturbed by
small disturbances due to salinity dispersion.- The creation of the
mixing zone between fresh and saline water 1is described as a formation
of a boundary Tlayer in the vicinity of a sharp interface. This method
is primarily recdmmended for flow fields in Which‘simp]é répreéentétion
of the sharp interface migration is obtainable. This model was modified
to form the basis for calculation of indices indicating sensitivity to

potential saltwater intrusion by Calderon [1981].

10



Numerical Studies

Simulations of flow conditions in an aquifer subject to density
stratification due to salinity distribution can be done by applying
complete numerical schemes for the performance of the simultaneous
solution of the equations of motion and salinity transport.

Numerical technigques have an advantage over analytical techniques
since they are able to handle complex boundary conditions, varying
aquifer thicknesses, heterogeneous and anisotropic permeabilities,
varying pumping rates, multiple wells, and recharge. However, such
numerical flexibility requires substantially better field data for input
and verification. Finite difference, finite element, and boundary
element techniques have been used. Each has some Tlimitations. For
example, the finite difference solution is a numerical technique that
uses a linear approximation of the differential terms 1in an equation.
As a result, problems arise with stability and convergence to a solution
in actual ron-linear phenomena such as the stratified flow situation.
Considering Tleaky aquifers, variability of the aquifer's permeability
and that of the semiconfining formations leads to a significant increase
in the grid size for regions in which the flow 1is very slow.
Incorporation of multiple aquifers and aguicludes in a three-dimensional
model cannot be practically done by the application of a complete
numerical schehe. Problems of anerica1 dispersion stemming from the
use of the finite grid size must also be considered. These problems éan
be minimized by yarious methods, but they cannot be avoided in‘comp]ete
numerical models.

A numerical approach was applied by Pinder and Cooper [1970], who

developed a two-dimensional model based on a finite difference

11
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characteristic method for the simulation of the movement of a saltwater:

front in an aquifer. For the same purpose Segol et al. [1975] developed
a finite element procedure that provides a complete solution of the two-
dimensional equations of motion and salinity transport.

Christensen [1978] presented a finite element method for analysis
of freshwater lenses in the coastal zones of the Floridan Aquifer. This

was applied to a large area 1in Pinellas County but with no data

available then for verification. It was based on assumption of no

buoyant forces or dispersion, with a piston-type displacement of salt-
water by injected freshwater.

Rubin and Christensen [1982] and Rubin [1982] extended the integral
approach to the simulation of unsteady state flow conditions in a two-
dimensional aquifer subject to mineralization. Both studies use the
integral boundary layer method whereby the solute transport equation is
integrated over the vertical thickness of the transition zone subject to
certain similarity conditions. The resulting equatrion is then solved
simultaneously with the equations of continuity and motion by a finite
difference scheme. This approach was extended by Means [1982] for the
simulation of 1initial stages of saltwater intrusion in a three-
dimensional flow field.

Wneatcraft and Peterson [1979] used a finite difference scheme to
create a two-dimensional model simulating movement of a treated sewage
due to injection in a saline aquffer. ‘

Merritt [1983], 1in a joint United States Geological Survey and
United Stafes Corp of Engineers Project, studied the feasibility of
recovering freshwater injected and stored underground in South Flarida.

An attempt was made to use the subsurface finite-difference waste

12



disposal model [INTERCOMP 1976] to simulate the cyclic injection

required by the injection-recovery project.

Summary

While analytical models are easy to apply and give solutions to
“simple aquifer situations, they have the disadvantage of not being able
to accurately simulate complex flow phenomena. Numerical models can
simulate complex flow phenomena but encounter problems with stability
and convergence. Also, numerical models have large memory requirements
and use considerable amounts of computer time, making them inaccessible
to many professionals.

To overcome problems with stability, convergence, and computer
requirements associated with numerical models, it may be necessary to
méke some simplifying assumptions, or even combine the model with

analytical techniques.
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CHAPTER 3
REVIEW OF PREVIOUS WORK

Introduction

Simulation of flow conditions in a saline aquifer subject to the
injection of freshwater can be done by solving simultaneously the
equations of continuity, motion, and solute transport. However, this
procedure leads to a set of highly non-linear equations, thus causing
problems with stability and convergence in a numerical solution.

By extending Rubin's [Rubin 1982] work, Means [1982] uséd an
integral boundary Tayer technique whereby the solute transport equation
was integrated over the vertical thicknesé of the transition zone
subject to certain similarity conditions. By integrating through the
transition zone, equations describing flow in that area were greatly
simplified, thus making a numerical solution possible.

It is the intent of this report to modify the equations and extend
the theory of the Means report in an effort to simulate the injection
situation.

Before developing the equations to be wused in the injection
situation, 1t» will first be helpful to briefly review the séltwater

intrusion simulation done by Means.

The Approximate Method of Stratification Analysis
Figure 3.1 describes tne typical flow field for the upconing
situation in an inland aquifer. According to the figure, the flow field

is divided into the following three zones:

14
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(a)  the upper zone of freshwater,
(b) the transition zone,

(c) the underlying saltwater zone.

The flow in the freshwater zone is assumed to be horizontal; flow

the transition zone 1is assumed horizontal and of varying salt

concentration; displacement in the saltwater zone is assumed vertical.

The basic equations used for the simulation of stratified flow in

an aquifer are the equations of continuity, motion, solute transport,

and state represented respectively as follows:

> 9n

in which

Veq+ = i 0 ‘ (3.1)
> ~
q = -KVdo (3.2)
aC > ~
napt Ve (qC) =7 » (D»o vC) (3.3)
v =y, (1 +al) (3.4)
q = specific discharge
n = porosity
t = time
X = hydraulic conductivity tensor
) = potentiometric head
C = mineral concentration = mass of salt divided by the mass
of the saltwater mixture at any finite point within the -
control volume = ps/o
o = density of -saltwater m1xture =0 + pF .
ol = density of salt within the m1xture = mass salt in samp1e
> divided by volume of measured sample
o] = density of freshwater



D =  dispersion tensor

Y = unit weight

Yo = unit weight of reference

a = constant relating mineral concentration with unit weight

Equation (3.4) does not account for the effect of temperature on the
unit weight of the fluid. Since temperature can have a major effect on
the unit weight, and thus the bouyancy of a f]uid,‘Equation (3.4) will
be incorporated into the model (Chapter 4) in a form which will account
for temperature effects.

It is assumed in this analysis that .on1y the three principal
components (those components acting in the x-x, y-y. and z-z directions)

of the hydraulic conductivity tensor, K, are non-zero. A1l other

components are assumed to be equal to zero.

The Integral Method of Boundary Layer Approximation

The integral method was applied to the problem of description of
fluid boundary 1layers adjacent td solid bouncaries. Boundary layer
theory was first introduced by Prandtl [1904]. Blasius [1908] was the
first to discuss the concept of similar velocity profiles within a

boundary layer. It is the concept of similar velocity profiles which is

the base of the integral method. The integral method simplifies the

appropriate equations by integrating over the boundary layer thick-
ness. This procedure has been extended to many other types of‘probjems
in which integration occurs over:some physfcaI‘FEQidh of 1htérest. Dde
to its original applications, this is often called a boundary layer
| approximation. This method has been widely used in treatment of the

flow of jets and plumes in stratified or unstratified media.
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In the integral method, one assumes mathematical forms for the
profiles of parameters of interest, such as velocity and'concentration,
acrcss the "boundary Tayer." The profi]e§ are called similar profiles
because the mathematical form 1is the same at each section, and some
writers refer to these as similarity techniques. Once a similarity
profile is introduced, this is the same as specifying the solution form
within the “boﬁndary layer" region. The 1integration of the basic
equation, with these similarity profiles included, effectively reducés
the dimensionality of the problem being solved. For. example, 1in a
circular jet discharge, specification of axisymmetric similar profiles
and subsequent integration reduces the three-dimensional problem to one-
dimensional.

As noted by Morton [1961] and Benedict et al. [1974], the effect of
assuming similar profiles is to suppress analytical solution of the
details of the structure through the "boundary layer." Therefore, any
reasonable profile could be assumed. While different assumed profiles
might Tlead, for example, to different values for various empirical
parameters, the prediction of the overall behavior of the phenomenon
being modeled is presumed not highly sensitive to the form of profile
chosen, However, if one is interested 1in using the profile form to
predict concentrations or velocities at specific pqints in the flow
field, then the form needs to be sé1ectéd as accurately as pqssib]e.  It
should further be noted that any such integral approach decfeases 1ﬁ
accuracy as regions are reached where the assumpfion'df simi]arfprofifes
breaks down.

By dintegrating Equations (3.2) and (3.3) through the transition

zone and solving simultaneously Equations (3.1), (3.2), (3.3) and (3.4),

18



Means [1982] obtained a simplified description of the stratified flow
situation. In the solution, two different polynomials were used for
variation of salt concentration and specific discharge' acroSs the
transition zone. The constraints were essentially fhe following:

(a) For concentration - saltwater at the bottom of the transition

zone, freshwater (zero concentration) at the top.

N
U
~—

For specific discharge in the horizontal direction - zero at
the bottom of the transition zone, with the velocity from the
freshwater region at the top of the transition zone.

The integration yields three equations with three unknowns: s,
(drawdown), zy (bottom of the transition zone), and & (thickness of the
transition  zone). These equations are solved by an iterative ADI
(Alternating Direction Implicit) finite difference scheme. The
iteration is necessary because of the nonlinearity of the equations.
Some features of the solution procedure will be useful to this work, but
others will need substantial reworking. For example, some apparent
anomalies exist in transition zone thickness beneath the center of the
large pumping region studied by Means [1982]. These would be signifi-

cant for a single well, as in the injection problem.
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CHAPTER 4
ANALYSIS OF INJECTION

Introduction

In this chapter, Equations (3.1), (3.2), (3.3), and (3.4) will be
applied to the injection situation.

Figure 4.1 shows a profile of the injection situation. The flow
field in a situation where freshwater is injected into a saline aquifer
is the reverse of the flow field caused by upconing of saltwater under a
pumping well. Instead of flow moving radially in toward the well, flow
is now moving radially outward away from the well. Instead of having a
saltwater mound under a pumping well, there is now a freshwater lens
underneatn an injection well.

The flow in the freshwater Tens is assumed horizontal:; flow in the
transition zone.is assumed horizontal and of varying salt concentration;
and flow in the saline region is assumed vertical.

Development of Equations

The integral method simplifies the development of the model by
assuming similar profiles to represent the velocities -and solute
concentration in the transition zone. This allows Equationb(3.2) to bé
used to deécribe the velocities ih fhe zones of constant densitykwhilé
using the Integral Technique in the transition zone. By'assuming that
flow in the transition zoﬁé is horiionta]y(qz - 0), the hydrostatic law

of varying pressure may be applied
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Figure 4.1 Schematic description of the development of a transition zone
due to a freshwater injection into a saline aquifer
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p = -vdz ‘ ' (4.1)
Integrating (4.1) through the vertical thickness of the transition
zone yields
-z
t
Py - Pp = - gs vdz (4.2)
..Zb
where indices t and b represent the top and bottom of .the transition
zone, respectively. Potentiometric head, ¢ is defined as
_ P
Py E
where P is the pressure of some point and z is the distance from some

datum to the point. Applying (4.3) points at the top and bottom of the

transition zone results in

Py

¢ft = -:Y-; - Zt (4.4)
D
-0

¢Sb = :{—S‘ - Zb (4.5)

where ¢ft and ¢sb are the potentiometric head at the top of the
transition zone and bottom of the transition zone, respectively and
indices f and s represent fresh and saline water, respectively.
"Rearranging (4.4) and (4.5)

Py = Yf(ﬂbe_ + Zt) (4.6)

Py, = V(b *+2p) (4.7)

Substituting (4.6) and (4.7) into (4.2), and dividing by -v,,
where Ty is the unit weight of reference, yields ' ' "
Y Y ot

S f B Y

"o "o
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From (3.4) it can be seen that

I

Yo = V(1 + oCy) (4.92)

Ye = Y, (4.9b)

Inserting (3.4), (4.9a) and (4.9b) into (4.8)

(1+ acs)(¢sb tzp) - <®ft+ Zt)
-Z‘t
= SS (1 + aC)dz (4.10)
_Zb

It is assumed that the transition zone is a boundary layer which is
isotropic in the x and y directions, and where the specific discharge
and the solute concentration profiles satisfy the following sfmi]arity

conditions

u = UF(n) - (4.119)
v = VF(n) (4.11b)
C = COL(n) : (4{11C)

where u and.v are the components of specific discharge in the horizontal
x and y directicn, respectively; U and V ére the reference specific
discharge in the horizontal x and y direction, respectively: Cy is tHe
reference concentration: F and L are the distribution functions for
specific discharge and solute concentration, respectively; n is the
dimernsionless vertical coordinate within the transition zone and is
defined as

Lz - ()] z+zy : :
n=— = s > and ._ (4.12a)

5= -z, - (-zb) =z -z ' R (4.12b)

where, & is the thickness of the transition zone.
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Means (1982), suggested polynomials for the distribution functions
F and L which will be employed in this work. These functions are
defined as

2 .
2n - 1 (4.13a)

]

—
3

~
0]

2

—
—~
=3
~
]

It is assumed that the distribution funcfions- are applied along the
vertical axis. Actually these functions would be applied along an axis
normal to the boundaries of the transition zone. The assumption of a
vertical profile is probably valid as long as the slope of the transi-
tion zone 1is small. Differentiating (4.12a), with respect to the

vertical coordinate z, yields

o)
2= | (4.14)
Introducing (4.11c), (4.12a), and (4.14) into (4.10) yields
(1 + (ZC + Zb) - (r‘bft t)
S [1 + aC L(n)]3dn (4.15)

By introducing (4.12b) into (4.15), canceling & on both sides of the
equation and rearranging

(1 + aCS) b, - o

sb ft * OCCSZ

1
= af 8 g L(n)dn (4.16)
0

Introducing the salt concentration in saline water, Cq as Ce = Co

and rearranging (4.16)

bep = (1 + E)og + Fz - EégSO L{n)dn (4.18a)

1-2n+n (4.13b)



where

£=of = [YS - Yf)/Yf (4.18b)

It is assumed that only constant vertical flow exists in the
saltwater below the transition zone; as a result, if the porosity is
assumed constant in time, (3.1) becomes

oW
= 0 (4.19)
Consequently, w, the vertical velocity cannot vary vertically, and it

must be equal to the value it attains at the bottom of the transition

zone, which is given by

(zy) 9, Ky (4.20)
ot n n a3z ‘
Rearranging and integrating through the saltwater region
-2 9z -z '
)
g b a¢=n¥t’-g - (4.21)
-B -B z
1 1
Carrying out the integration, (4.21) becomes
9z, -z, + B '
. b b 1
dgp = tgp = Mg . ] : (4.22)

Initially, ¢B = ¢ where 0o s the potentiometric head at the
1

bottom of aquifer 1 at time = 0; substituting for %1 and rearranging

so’

(4.22).

9z B
¢sb - ¢so o at

(4.23)

It is assumed that before injection occurs, vertical equipotentials
exist throughout the aquifer, whereby applying continuity of preséure
gives B

%oYs = PN (4.23b)

where ¢fo is the potentiometric head at z = 0, time = 0.



Introducing (4.23) and (4.23b) into (4.18a) gives

bep = dpy + (1 + E)n ¢ o ]+ =
1
- &68 L(n)dn (4.24)
0

where ¢ft is the potentiometric head in the freshwater zone at any time,
t.
The increase of potentiometric head at a point due to injection

into an aquifer is defined as

where s 1is the head build-up. Introducing (4.25) into (4.24) and

rearranging yields

dz K 1
b _ z - (4.26
T T AT =) (L FE) (SRR TR 50 L(n)dn) )

which»is the equation describing the rate of growth of the freshwater
lens.

The injection of freshwater into saline water creates a nonhomo-
geneous, binary process involving a mixture of freshwater and salt. For
a nonnhcmogenecus fluid, the conservation of mass principle must be
satisfied for each component .of the fluid mixture. Figure 4.2 is a
control volume for the conservation of ffeshwatef taken from the top of

aquifer 2 to the bottom of the transition zone in aquifer 1. The

‘convection and diffusion terms are shown as inflows and outflovs of the

control volume.
The conservation of freshwater mass equation will be derived

first. The sum of all freshwater mass inflows are equal to the rate of
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change of storage of freshwater in the control volume. This fact can be

written as follows:

B B
o 2 A 2
- 52;)0 pFuZdzdxdy - Eyfso onzdzdydx

-Z

5 (0 (0
- 3?{; pFuldzdxdy " 3y , valdzdydx
t t

s(* | Y&
- 5;5; oFuédndxdy - gyfs onédndydx
0 0

B
#Nogdxdy = 6§<5>2 o-ndzdxdy (4.27)
-2,
where u and v are components of specific discharge in the x and y
directions, respectively, Pe is the density of freshwater and n is the
porosity of the aquifer.
The term on the right hand side of the equality sign in Equation
4.27 is the storage term. Any net inflows or outflows to or from the
contral volume are accounted for in this term. It 1is assumed
that Pps Ns dx, and dy are constant with depth of the aquifer.

Rewriting the storage term in Equation 4.27 yields:

4 B

B
a( ©2 D
gff) pFndzdxdy = gf-(OFndxdySS
b

2 4z) (4.28)

_Zb

Integrating 4.28 and differentiating with respect to time yields

3 3o Zh
Eﬁ;g>z pFndzdxdy = Bf»ndxdy + “SE'pFndXdy 7 (4.29)
b

where p is the density of the saltwater mixture.

28



The first term on the right side of the equality sign of Equation
4.29 refers to the changing mass of freshwater with time within the con-
trol volume due to the compressibility of the fluid and the aquifer.
The second term on the right side of the equality sign of Equation 4.29
refers to the change in mass of freshwater due to a change in size of
the control volume. A change in the control volume size is effected by

the growth of the freshwater lens. Equation 4.29 may now be written as

follows:
3 “2 6MS azb
53 » pFndzdxdy = =t gf—.pFndxdy (4.30)
b
oM
where the term —5% is the change in mass of freshwater in the control

volume due to the compressibility of the aquifer. The subscript s in
this term indentifies the mass change as a change due to the storativity
of the aquifer and fluid.

Substituting (4.12) and (4.13) and (4.30) into Equation (4.27), and
using (4.11a) and (4.11b) to represent the velocity terms in the transi-
tion zone of Equation (4.27) and dividing Equation (4.27) by o> dx and
dy yields

B B
NG 2 0 0
) i,dz ) v, dz - 2 u,dz - 2 v.dz
ax ). U2 3y 2 % 1 3y 1
0 0 . -z,

NG NG |
- 3% OulF(n)édnr— 3y :OvlF(n)édn + N

6MS 1 azb

2t dexdy o ot

(4.31)
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The first storage term on the right side of Equation (4.31) may be

rewritten as
aMS 1 BMS (82 + Zb)

ot oFdxdy at dev

(4.32)

The storage due to the compressibility of the aquifer and its fluid is

defined as follows:

AM_ (B + z,) «
sz b 3 . g2 (4.33)

Bt pedv ognay (B, + 2, )(1 + nay’ Bt ° 3t

where v 1is the volume of the control volume, g is the gravitational
acceleration of the earth, oy and ap are the reciprocal of the bulk-
modulus of elasticity of the aquifer and fluid, respectively, s is the
head buildup of the fluid in the aquifer, and S is the storativity of
the aquifer.

It can be seen from (3.2) that

o Bs
u = K- (4.34a)

= ke , .34b
v Ky (4.34b)

where K is the hydraulic conductivity of the aquifer. Once again, the
sign of the derivatives is consistent with the definition of s given in

Equation (4.25).

Introducing (4.32), (4.33), (4.34a) and (4.34b) into Equation

(4.31) yields

~B ' B
2 2 0
k\ as o} 6] 35
X )y ¢ ‘fz * @SO Ko ay S Ky 5 dz + By S tKl 3y 42
Pl 1K %S E(n)sdn + n)sdn + N
X 0 1 dx n 1 ay
=525 .2 (4.35)

at 6t
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Integrating and rearranging EqUation (4.35) yields

2 k. (8 + 8 lF( )d 1257+ 21k, (8 + 8 1F( )d )__65}
ax L\ . AN Ty th U g nen) zy
3z,
b _ . 8s
tN-n—r= S5 (4.36)
where
B, K
__272
B = k1 +zb-<5 (4.37)

Equations (4.36) and 4.37) describe the conservation of mass of

freshwater. Next, the conservation of mass of salt equation will be
written. Figure 4.3 1is a control volume for the conservation of salt
taken from the top of aquifer 2 to the bottom of the transitjon zone in
aquifer 1. Note that in Figure 4.3 it 1is assumed that all dispersed
salt comes from the saltwater region, and that no diffusion of the-sa1t
occurs across the top of the transition zone. The rate of change of
storage of the salt in a given volume is equal to the sum of all inflows
and outflows of the material, plus any internal sources and sinks (sﬁch
as radioactive decay, biological degradation; etc., none of which exist
for salt).

The conservation of mass of salt equation is written as follows:

1
o}
- 62%; p-ulF(n)Cédndxdy

0
3 1
- SN 0V F(n)C&dndydx
Yy 1T ,
3C _ 3 ' ‘ ,
+ (=053 o dxdy) = 35?; oCndzdxdy (4.38) -
Z=Zb . "Zb A - .

where C the concentration of salt and D is the diffusion coefficient.

In the transition zone, Equation (4.11lc) describes the concentration of
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salt as C = COL(n). Substituting Equation (4.11c), (4.12), (4.13), and
(4.14) into Equation (4.38) and dividing by o, dx, and dy yields

-2 lu F(n)C L(n)&dn - —9<:1v F(n)C L(n)&d
dX 0 1 0 ame 1 0 n
g B(C L(n) A (L
-7 a1 n=0 = ESOHCOL<7])5C!T) (4.39)

Dividing Equation (4.39) by C, and multiplying by & and re-arranging

yields
2
1 2 Su v 98 2 -1
38 r.2 1 1 1 foYe)
(—— St(n)dn) =+ [6(7= + =) + (u + v ——)]< F(n)L(n)dn
2 o &t &x By S T
= -DL'(0) (4.40)

where D is generally accepted to be proportioned to the absolute value

of the specific discharge, or

1
2, vlz) 2 (4.41)

where a is equal to the transverse dispersivity of the aquifer.
Introducing Equations (4.41), (4.34a) and (4.34b) 1into Equation

(4.40), one obtains

1 2 2 2
n 38 2 0°s D°s
——6 L(n)dn) 2= - [5% (25 + 23)
2 . ot 1 6x2 'ayZ

2 2 1
1 ds 86" , 0ds 36
+ =K (3;-5;~_+*gy Ey~)]550 F(n)L(n)dn

=k (22 (B e e



The pertinent equations to solve now become Equations (4.26),

(4.36), (4.37) and (4.42). These equations could be solved by

perturbation techniques (e.g. Rubin and Pinder, 1977), but the
possibilities of multiple wells and aquifer inhomogeneities suggest that
a numerical solution will provide more flexibility. Such a solution
procedure will be outlined in Chapter 5.

The equations developed 1in this chaptef should provide a sound
basis for analysis of many injection problems. Numerous assumptions
~have been made to simplify the equations while still maintaining the

basic character of the physical system.

34



CHAPTER 5§
NUMERICAL SIMULATION

Development of the Numerical Model

Equations (4.256), (4.36) and (4.42) completely describe the flow
process due to a freshwater injection into a saline aquifer. Equation
(4.37) allows continuous updating of the flow thickness. Ih this
chapter a method will be devised in which these equations can be solved
simultaneously to phovide a description of the injection process. Since
Equations (4.26), (4.36) and (4.42) are non-linear and expressed by
three independent variables (two spatial variables and a time variable),
a numerical scheme will provide the most direct solution. Since finite
element and boundary integral models are generally more site-specific
and useful for only one application, a finite difference numeéiéal
scheme will be used. -The finite difference Scheme has the advantage of
being applicable to a wide varjety of boundary situations, requiring
somewhat less input data, and requiring somewhat less computer time and
space.

Since Equations (4.26), (4.36) and (4.42) must all be solved
simuitaneously, it 1is advantageous to use an iterative alternating
direction implicit (IADI) finite difference method. The main advantage
of using an ADI method is that for each time step it reduces large sets
of simultaneous éqUations into sma]]errréefs [Beér;4 1979];> The ADI
method is accomplished by breaking the desired forward stepping in time

into two steps. First, the unknowns are solved for in the x-direction
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at the advanced time step using the known terms being set 1in the
y-direction at the previous time step. In the second half advancing
time step, the situation reverses. The unknown values at the advanced
time step are now written in the y-direction and are solved using the
values in the x-direction at the previous time step. Since Equations
(4.26), (4.36) and (4.42) are all interdependent on each other, it is
necessary to solve them iteratively. This means that the ADI process is
repeated for each time step, using in each iteration updated values. |

A Finite Difference Approximation of Equation (4.36)

In formulating a finite difference approximatidn for Equation
(4.36), an ADI method is used so that there are only three unknown
variables at one node (the three variables at the advanced time step).
Using only three unknowns at each node, a'tridiagonal matrix can be
generated for each column or row of a time step. Th{s is the main
reason for going to an ADI method, for reduction to a tridiagonal matrix
allows use of the highly efficient Thomas algorithm for solution of the
system of equations.

An implicit ADI finite difference scheme for the calculation of
head build up, (4.36), is presented as follows:

First, the calculations are made for the wunknowns in the
x-direction at the (m+l) time step using known values in the y-direction

at the (m) Tevel.

' ' 1 K, At ( §r0.5) |
iy [+ 68 f(mdn) ] o+ o™ s

0 ST L B
1 K, At 1 K, At
v 1 0.5 1 0.5
+[(8 + 5SOF(n)dn) __Z(Ax) ]STS.&) + [(8 + 5SOF(n)dﬂ) (AX)Z]ETS.B,%}

w

(o)



(m+1 1 K18 (me0.5) _ ) 2y (m+0.5
_— ),[(3 + 5SOF(n)dn).(_AX_)_?] ?+0.5,j‘ S (f?j -n ( ) n,J )at

1 K
- si™)[(s + §E; F(m)dn) Lo 5] (m0-5)

T, :j+1 ’ O (A_Y) 1a\]+0.5
1 K, At
(m) (m) 1 (m+0.5)
+ (Si,j-l - si,j)[(g + 8 OF(n)dn) (Ay)ZJi,j-O.S (5.1)
where B.K :
_ 272 .
B = K1 + Zb -8 | (5.2)

In Equation (5.1), the notation m implies known values from the previous
time step, while (m+0.5) represents an avérage over the time step from
time (m) to time (m+l). Similarly. the notation (i-0.5) and (i+0.5)
implies use of appropriate average values over the space increment from
i-1 to i and from i to i+l, respectively. The notation j+0.5 has a
similar meaning. For example, the value of & used in such averaged
terms will be the average of the & values at the two end points of the
indicated region. Note that this also allows one to conveniently
specify K values which vary spatially.

Next, the calculations are made for the unknowns in the y-direction
at the (m+2) time step using the previously calculated values in the

x-direction at the (m+l) time step.

1 K
si™2) (g 4 s E; F(n)dn) 1 ] $m+1 5) ng;Z) [s + f(B

1.3-1 0 (ay)% 153705 :
1 K, At 1 KAt
o e 50 188 160+ o) st (it
0 (ay)=  T29mme o Jo o (w)f
1 K, At dz
(m+2)r 1 (n+1.5) _ (m#el)  77by(ml. 5)
'Si,j+lt(5 + 5 0F(n)dn (Ay)z} i .3+0.5 S e n t)1,3 At
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et (1) g(ml) e, 6§F(n)dn)-KlAt [(m+1.5), (o (m+1)
0

],J 1.+].,j 1,\] (AX)2J1+0.5,J‘ 1-1,3
: 1 K. At
(m+1) S 1°% 5 (m+1.5)
- syMEN(8 + 8\, F(n)dn)——s] | . (5.3)
1,3 0 (Ax)2 i-0.5,]

where B8 is defined by (5.2)

In Equation (5.3), the 0.5 superscripts again mean averages over
the pertinent temporal or spatial increment. The superscript (m+1.5)
implies a time average over the step from (m+l) At to (m+2)At. The
spatial subscripts such as (i+0.5), (i+0.5), and (j-0.5) represent
spatial averages as in Equation (5.1).

A Finite Difference Approximation to Equation (4.42)

It was observed that when Means [1982] used a centered difference
scheme for representation of the velocities 1in his pumping model,
several anomalies occurred in the vicinity of the well.

It is generally accepted that a centered difference scheme gives
the most accurate finite difference description of gradients in fhe
vicinity of a point. It has been observed in this report however, that
the centered difference scheme does not work when representing
velocities (head gradients) in the vicinity of a well. At a relative
maximum or minimum on a head-curve, a centered difference scheme will
give a gradient of zero. This is technically the correct gradient when
Ax approaches to zero, bgt for a finite grid size there actually is a
relatively large gradient in the increment adjacent to the well. It is

for this reason that 'a backward difference schéme. is “used when

representing velocity terms in the transition zone thickness

calculation. The following is a backward difference representation of

the squared thickness of the transition zone in the x-direction:
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The equation can now be solved implicitly for & 1.

Likewise, for the calculation of the squared thickness of the
transition zone in the y-direction at time step (m+2), Equation (4.42)
can be written as follows: |
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This equation cen aiso be solved for 61 j .

A Finite Difference Approximation to Equation (4.26)

The equation for calculation of the change in thickness of the

freshwater lens with respect to time is written simply as follows:

K 1
( o T ey - 2 ;,550 LT 59

General Solution Procedure

First a grid is created in the x-y plane. On the grid there are n
number of nodes in the x-direction each spaced Ax distance apart. There
are m number of nodes 1in the y-direction that are each spaced Ay dis-
tance apart. Arrays containing the permeabilities, storativities, and
well magnitudes for each point are superimposed on the finite diffeéence
grid so that each point on the grid is reprééented by its corresponding
points on the arrays.

As the solution procedure begins. the head buildups are first
calculated using the ADI method. Depending on the time step, Equation
(5.1) or (5.3) is used. At the first time step, Equation (5.1) is used
going in the x-direction one row at a time. At the end of each row a
tri-diagonal matrix has been formed and is solved usfng the Thomas
Algorithm. After Equation.(S 1) has beon so]ved the values of the head
build-up will be used in the solution of the th1cknpss of the tran31t1on
zone, Equation (5.4).

With the vaiues calculated in the head build-up and the transition

zone thickness, the solution of the <hange in size of the freshwater



lens with respect to time can be calculated from Equation (5.6). As
stated previously, the solution of the governing equations must be
iterative since the equations are nonlinear. The iterations continue
until some specified level of tolerance is met; that is, the difference
in the parameter from one iteration to the next must be less than the
specified allowable difference.

Once the required tolerance has been met in the x-direction portion
of the ADI prodecure, the next time step proceeds. Drawdowns are
calculated using Equation (5.3), with 52 being obtained from Equation
(5.5). The bottom of the transition zone can be found by use of
Equation (5.6). Figure 5.1 shows a concise flow chart illustrating the
calculation strategy.

Stability and Convergence Characteristics of Numerical Scheme

Because the equations being used here are nonlinear, it is
difficult to perform one of the standard stability analyses on- the
equations to determine their expected stability and convergence as a
function . of time and distance steps and the pertinent physical
parameters. However, some preliminary estimates can be made based on
available Titerature on solution of the groundwater and diffusion
equations by similar schemes. Bear (1979), Holly (1975), and numerous
others present such material. The basic drawdown equation, Equation
(4.33), with finite difference counterparts (5.1) and (5.3), should be
infiuenced only slightly by values of & and Z, - The stability ériterion
for it, as well as an indicator of convergence (or ac;ucapy), should be
somethﬁng 11keb. | | |
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in which C; = constant depending on the exact scheme used, but probably

about 0.5. |
Similarly. the disbersion equation, represented by Equation (4.47)

and its finite difference representation Equation (5.4) or (5.5), will

likely adhere to a constraint something like
At
AX

D

A , | (5.8)

in which‘CZ = a constant which may or may not be equal to Cj.

There may be other constraints placed on model performance as
well. For example, numerical experimentation suggested that for the
very first time steps some relationship between the rate of growth of zy
and the other terms exists which may require even smaller time steps
than given by Equation (5.75 and proved to always be the controlling
factor in determining an acceptable time step. For typical values of
T/S of 108 - 109 m/day, the time step required by Equation (5.7) was in
the order of 0.0001 days or less for typical values of Ax of 100-500
meters. |

While such time steps may in fact be necessary for some problems
requiring the complete model capabilities, these small time steps begin
to increase computational time substantially, especially if one is
interested in times on the order of months or years. Therefore, in

trying to be consistent with one of the stated objectives of this

proj

1%

ct, to minimize computer time and storage requirements, alternative

approaches were sought for use in appropriate cases. It is expected
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that drawdown will stabiiize much more quickly than  the other

parameters. In fact, drawdown is expected tuv stabilize in about a day
or so; in fact, for the Pinellas County situation in Chapter 6, the

drawdown will stabilize within an hour. This rapid convergence of the



drawdown, coupled with 1its severe constraint on allowable time step
suggests two possible alternatives in the calculation procedure. First,
one can proceed with the numerical scheme as is, but with proviéions to
begin bypassing Equations (5.1) and (5.3) when the drawdown reaches
steady state (as measured by the rate of change falling below some
specified level). A second approach would involve bypassing Equations
(5.1) and (5.3) altogether and wusing an analytical method for
calculation of the drawdowns. The particular method would depend on the
aquifer situation 1in the area being modeled. Either one of these
methods would relax the time step constraints, although the first method
would still require small steps for a period of time. 1In the following
paragraphs, the use of the second scheme will be outlined. Subsequent
results will show that time steps of at least one day can be tolerated
with the analytical scheme.

A Simplified Injection Model

By replacing Equation (4.36) with an analytical drawdown
relationship, some simplifying assumptions must be made. It is assumed
that the stratified conditions in the aquifer do not affect the

drawdowns. This assumption was checked with field data from the United

States Geological Survey report on injection wells in the Pinellas

County, Florida area [Hickey, 1982] and was found to be valid.

Analytical Calculation of Head Build-up

There areﬁmany analytical methods available for fhe cé]cu]étidn of

drawdowns due to the influence of a well. Thets [1935] developed a

drawdown equation for unsteady-f]ow‘in a cdnfined équifer.

_ o (7 ey
by - 0 = mﬁ—gyzo ey (5.9)

o~
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where Q = discharge or injection rate of the well, T = transmissivity of
the aquifer, and @ is given by the following relationship:

Q =£§% ' , ' - (5.10)
where r = radius from the well to the point evaluated, S = storativity
of the aquifer, and t = time since thé injection or pumping began.

The exponential integral in Equation (5.9) can be approximated by

an infinite series

@ -Q 2 3
f e de _ @ 9
S 0.5772 - 1In Q + Q - st 3T T e (5.11)

for a small value of Q, the sum of ﬁhe series beyond Q becomes
negligible [Cooper and Jacob, 1946].

Although Equation (5.9), using (5.10) and (5.11), provides an
accurate solution for a confined aquifer, it does not account for
leakance 1in the confining layer. Since most practical applications
would encounter leakance, it is desirable to account for Teakance iﬁ the
drawdown calculations.

Hantush and Jacob [1955] developed the following relationship
describing the drawdown due to unsteady flow to a well in an infinite

leaky confined aquifer.

® 2
- Q 1 (r/2)
N i Sy=9 y &XP (-y - 4y—) dy (5.12)
= gk (e, /) R (5.13)

where 2 is defined in Equation (5.10), r is the radius from the well,

and

= (0

K(

(5.14)
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where A is the leakage factor; T is the transmissivity of the aquifer;
and K' is the thickness and permeability of the semiconfining layers,
respectively.

For a large r/XA value, the integral 1in Equation (5.12) can be
approximated by a Taylor series expansion [Hunt, 1978]. A more simple
and accurate representation is an asymptotic expansion by Wilson and

Miiler [1982].

W@, /) = (00) “exp () erfc (- ) (5.15)

where erfc is the complementary error function.

The previous approximation was used extensively in this report. A
problem occurs, however, in aquifers of high tfansmissivities,
especially at Tocations close to the well where r/A values are small and
the assumption of large E/x values is violated.

An alternate solution of Equation (5.12) dis to numerically
integrate the integral using a numerical integration technique. “This
method yielded excellent results for calculation of drawdowns, and
worked for a wide variety of injection situations.

In an effort to conserve computer resources, a relationship
developed by Hantush was used to approximate Equation (5.12).  The

2

2
assumption for the following relationship is that @ < r /20N if Q@ < 1

[Bear, 1979]

2 ' : .

W(Q, r/A) = 2K (r/A) - Io(r/x) W(TE/SA ) (5.16)

Where Ko and Io

polynomial expansions. W(Tt/SA ) is an exponential integral of a well

2
function W(Q) where Q@ = Tt/SA .

are Bessel Functions that can- be apphpximated-\Using:
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An advantage of applying analytical drawdown calculations is that
there are many types of equations that apply to many situations. In his
book, Muskat and Wychoff [1935] describes an analytical means for
accounting for pértia] penetration of the well in steady state drawdown
calculations. Hantush also derived an infinite-series expansion
equation that accounted for partial penetration in a leaky aquifer for
unsteady flow [Bear 1979].

A Simpiification of Egquations (5.4) and (5.5)

If an analytical method is being used to calculate drawdowns, the
finite difference approximation of head gradients can be eliminated or
refined. Specific discharge 1is proportional to the head gradient.' If
the head gradient could be calculated analytically by differentiating
the drawdown eguation, an exact solution for the specific discharge
could be obtained.

If differentiation of the drawdown equation is not practical, a
more refined finite difference approximation can still be atta%néd.

ince drawdown can be calculated at any point, finite difference points
for velocity calculation are not restricted to the points on the overall
finite difference grid. To find head gradients at a point, drawdowns
very close to that point at distances independent of the overall grid
size, can be found and head gradients calculated using a finite
difference scheme. | _ |

It was bbserved in the report by Means [1982] and in this rebbrt

that drawdowns attain steady state conditions rapid}yQ For this reason

it is reasonable to use in Equation (4.42) drawdowns at the préviéﬁ§i

time step, thus making an explicit solution to Equation (4.42) possible.

i
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By calculating the slopes directly, and by using slopes at the

previous time step, Equation (4.42) is now approximated by

n (1 5:(?+1)' 65(?) 2(m) 625 625
B ( s E) - . : =z > o>
G So L{m)dn) KE 155" %5 Gt i)
LN L RO LR I e
ok Tty T 1] SOF(“)L(”)"”
_3s.2 _8s. 2,1 '
= Al + () 2 L () (5.17)
. 2(m+1) .
Equation (5.17) can be solved for 61 . explicitly.

b

General Solution Procedure

Since the modified version of the injection model calculates

drawdowns analytically and calculates the transition zone thickpess
explicitly, only the equation for the thickness of the freshwater lens
is solved iteratively. Figure 5.2 shows this.procedure in a flow chart.

By reducing the number of equations to be iterated, and by solving

Equation (4.42) explicitly, computer resources are conserved greatly.
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CHAPTER 6
MODEL BEHAVIOR

Introduction'

In this chapter the fully numerical model is tested extensively
using various input parameters. The objective of this chapter is to
observe model behavior and determine its sensitivity to certain input
parameters.

General Behavior of the Fully Numerical Model

Inspection of Equation (4.36) reveals that it is simply a form of
the continuity equation. An important feature of this equation is that
it utilizes a variable transmissivity.

Transmissivity is the product of the hydraulic conductivity and the
thickness of the aquifer. Equation (4.36), however, sees the aquifer
thickness as only the thickness of the freshwater region minus a
fraction of the transition zone. The thickness of the freshwater region
(determined from Equation 4.26) grows in response to the head buildup
associated with the injection process. Because these equations are
solved iteratively at each time step, a freshwater zone thickness will
be obtained that satisfied edch of the equations.

As an injection into the wunstratified aquifer continues, the
ﬁydrau]ic head of the aquifer will steadily increase. This is not the
case in the stratified aquifer. Initial head increases may be higher in
the stratified situation, however, head build-up will quickly stabilize.

Any head build-up in the aquifer will cause the thickness of the fresh-
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water zone to be increased. This in effect increases the transmissivity
- of the aquifer, thus reducing the head build-up resulting from the
injection process.

At the beginning of the simulation, when the freshwater lens is

very thin, the transmissivity is small, causing the injection to create

a large head build-up. As the freshwater lens increases in size, the

transmissivity becomes larger, thus reducing the effect of the
injection. This reduction in head build-up is somewhat offset by the
increase in head with time.

Observation shows that for deeper saline aquifers and relatively
low injection rates, the freshwater lens grows very slowly. This causes
the head build-up to reach a "temporary" steady state. As the fresh-
water lens grows significantly enough, the freshwater zone thickness,
and thus, the transmissivity increases, and a new temporary "steady
state" is approached. This cycle continues until a final steady state
is reached. This steady state can be derived using Equation (4.26). At
steady state, |

azb

5 0 (6.1)

Substituting Equation (6.1) into Equation (4.26) and solving for Z,

yields

1 ;
Z, =7+ 655 L(n)dn ‘ (6.2)

0

iK%

The integrated concentration profile that is assumed for this report is

) :
E; L(n)dn = 0.33
0
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‘The buoyancy term (Z£) for freshwater in saltwater is typically 0.025.

Substituting these va}ues into Equation (6.2) yields

Zb = 40S +

% | - (5.3)
Figure 6.1 shows the head build-up, freshwater lens thickness, and
transition zone thickness as they vary with time for a given set of
input parameters. .

To speed up the behavior of the model, and to make trends more
obvious, the porosity of the aquifer is lowered to 0.05. This is not a
realistic value for most aquifers; however, the higher velocities
associated with small pore spaces increases the rate at which the
freshwater lens grows and thus speeds up the climb toward steady-state
conditions.

Analysis of the behavior shown in Figure 6.1 using Equation 6.3
reveals that steady state is being approached. Shown in Figure 6.1 is
the actual value of Z,, as it grows with time. Also shown in the figure
is the calculated value (from Equation 6.3) .that Z, should have, given
the actual head build-up and transition zone thickness for each time
step, if it were to be at steady state at that particular time step. It
can be seen from this analysis that the system is approaching steady-
state conditions.

Model Response to Input Parameters

In an effort to ana1yze the fully numerical model's response to
certain input parameters, some of the parameters were varied and the
corresponding model behavior was recorded.

Grid Spacing

When hydraulic gradients are changing rapidly in space, small grid

spacings are necessary to give an accurate solution. Near the well,
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Figure 6.1 Plot of simulation results at the well




where the hydraulic gradient 1is very steep grid sizes must be chosen
carefully. To simulate behavior at the well using a finite difference
scheme, a grid si;e must be chosen that will accurately reflect the well
geomatry.

It has been noted by Prickett and Lonnquist (1971) that model accu-
racy can be improved by spatially varying grid sizes throughout a simu-
lation. This could be accomplished by using smaller grids at points of
steep hydraulic gradient. Some amount of experience is necessary in
defining the magnitude of the variable sized grids, and this experience
can be gained only by making a few computer runs with different grid
configurations.

An ADI model of an unstratified, confined aquffer with leakance was
used for the grid size analysis. This model was used to observe the
effect of grid size on the accuracy of finite difference models near the
well. This model has the advantage of being less demanding of computer
resource and is easy to compare to analytical solutions. .

The summarized response of the ADI finite difference approximation
to various grid spacings is shown in Figures 6.2 and 6.3.

A head build-up of 4.5 feet was calculated using the ana]yfica]
solution of the same aquifer parameters for a point at the edge of a
twe-foot diameter well, using the Theis method as modified by Hantush
and Jacob (1955) for leaky aquifers.

A comparison of the numerically approximated solution and the
‘analytical solution at the well reveals that as the grid sizes are made
sﬁa]ier, the numerical approximation resh]ts approach those of the

analytical solution.

5

(82
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It was also noticed in this analysis that points away from the well
are not much affected by the change in grid size.

It can be seen that for this simulation, a reasonable numerical
reprasentation of flow conditions about a well of 1 foot radius will
require grid sizes ﬁear the well of approximately 15 feet. If reason-
able accuracy is required near the well, a variable size grid must be
utitized. For this case, the grid must be as small as 15 feet. For

ther simulations, the grid size may be smaller or larger. For each
case, an analysis similar to the one performed in this section for the
desired aquifer parameters should be done.

Dispersivity

Equation (4.42) vdescribes the transition zone growth. The
principal component of this equation is the dispersion term. The
dispersion term is dependent on the average speed of the groundwater
flow. Because the velocity terms 1in the transition zone are assumed
horizontal, and the transition zone grows vertically, the coefficient of
importance is the transverse dispersivity.

Simulations using different dispersivities, but otherwise identical
data, aré shown in Figures 6.4, 6.5, and 6.6. It can be seen from these
figures that an order of magnitude increase of the input dispersivity
triples the transition zone thickness. This is consistent with Equation
(4.42). It can be seen from this equation that the dispersion term D is

proportional to the square of the transition zone thickness & and that

an increase of D by 10 times will increase & by the square root of 10,

which is approximately 3. Such an increase, however, does not cause any

noticeable change in the head build-up, and causes only a slight

increase in the thickness of the freshwater. lens.
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Figure 6.4 Injection simulation using dispersivity of 0.05m
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It can be seen in Figures 6.4, 6.5, and 6.6 that the transition.

zone is sometimes larger than the freshwater lens thickness. The model
is still valid in this situation as long as the hydraulic conductivities
of aquifer 1 and aquifer 2 are equal and 8 remains greater thaa zero.
Once B becomes equé] to zero, the effective thickness of the freshwater
zone is zero and the model is no longer valid. For the modeled
situation, the effective thickness of the freshwater lens is much
greater than zero. The simulations shown in Figures 6.4, 6.5 and 6.6
use hydraulic conductivities which differ from aquifer 1 to aquifer 2

and the transition zone sometimes enters aquifer 2 making the simulation

technically invalid. However, the effect of this problemn is small here .

since the difference in hydraulic conductivity between the two aquifers
is small.

Field determination of dispersivity is very difficult, making it
easy to misjudge its actual value. It may be necessary to determine the
dispersivity by calibration of simulated results to actual fié]d
observations.

Porosity

Figures 6.7 and 6.8 show the results of two simulations using
different porosities, but otherwise identical input parameters. Because
of the higher flow velocities associated with lower porosities in an
aquifer, the effect caused by a lower porosity is a more rapid‘movement
toward steady-state. By examining Equation (4.26) and observing Figures
6.7 and 6.8, it can be seen that he freshwater lens will grow more
rapidly if the porosity of the aquifer is lowered. It can.a1so be seen
in the figures and by examination of Equation (4.42) that an 1n;reased

velocity caused by a reduction in pore volume will increase the
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Figure 6.7 Aquifer simulation using a porosity of 0.05
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dispersion rate in the transition zone and thus increase the transition
zone thickness.

It is noted that in an actual aquifer the intrinsic permeability is
a function of the aquifer's porosity and that an increase in porosity
will cause an increase in the intrinsic permeability. It can then be
concluded that change in porosity actually may have a large effect on
the head build-up. The goal of this section, however, is to view the
response of the model to varied input parameters.
Anisotropy

Figure 6.9 shows the result of two simulations (simulation A and
simulation B). Simulation A uses input parameters for a hypothetical

isotropic aquifer situation. Simulation B uses input parameters which

are identical to the input parameters of simulation A (including hori-

zontal hydraulic conductivity), except that the aquifer in simﬁ]ation B
is anisotropic. The vertical hydraulic conductivity value in this
simulation is much less than the horizontal hydraulic conductivity. _

[t can be seen in Figure 6.9 that the head build-up is greater at
any given time in the anisotropic simulation. This is due in part to
the effective hydraulic conductivity being reduced by the lower vertical
component of the hydraulic conductivity. It can also be seen from
Figure 5.9 that the growth of the freshwater lens is much slower for the
anisotropic simulation. As a result of the reduced effective hydrau]ic
conductivity and the slow movement of the freshwater lens, the head
build-up is somewhat 1argef‘at any given time in simulation B. This is
partly ~because the thinnér freshwater lens further reduces the
transmissivity of the aquifer, thus causing the head build-up to be

greater for the input injection rate.
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. CHAPTER 7.
VERIFICATION

Introduction

In this chapter final results from the previously developed
injection models will be compared to a series of field injection-tests
into é saline aquifer in Pinellas County, Florida. Field data is taken
from a United States Geological Survey report entitled, "Hydrogeology
and Results of Injection Tests at Waste-Injection Sites in Pinellas
County, Florida" [Hickey 19827.

Geologic Framework of Pinellas County, Florida

Figuré 7.1 shows the geologic formations beneath St. Petersburg.
The aquifer system underneath Pinellas County 1is mainly composed of
several layers of sedimentary rocks ranging in age from Cretaceous to
Pleistocene. The sedimentary rocks that make up the aquifers are mostly
dolomite and 1limestone, which reach vertical thicknesses of approxi-
mately 10,000 to 12,000 feet. The stratigraphy of Pinellas county
consists of several layers of sedimentary rocks, deposited over several
geologic periods. The youngest deposits are the surficial sand depo-
sits, which were deposited during thevP1eistoéene Epoch.  Below the
surficial deposit is the Hawthorn Formation, which was formed‘during the
middie Midcené. Older formations in order of increasing age, are Tdmpa
Limestone (Lower Miocene), Suwannee Limestone (Oligocene), Ocala ‘;
vLimestone (Upper Eocene), Avon Park Limestone (Middle Eocene), Lake City
Limestone (Middle Eocene), and Oldsmar Limestone (Lower Eocene).

Pinellas County is located on the southwest edge of the Peninsular Arch,
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which is the geologic backbone of the Florida peninsula, and is that

area's most dominant subsurface feature. Pinellas County is alsa

located southwest of the Ocala Uplift, which is a gentle, anticlinal

flexure, and runs axially parallel to the Peninsular Arch. Previous
studies [Puri and Vernon, 1964] reveal that there are extensive fracture
patterns in the Ocala Uplift in the northern part of Pinellas County.

A11 of the strata beneath St. Petersburg are permeable to some
degree; however some rock Tlayers are much Tless permeable than others.
For this reason certain layers are classified as aquifers and others as
confining beds. An aquifer is defined as a formation, group of
formations or part of a formation that contains sufficient permeable
material to yield significant quantities of water to wells and
springs. They define a confining bed to be a body of "impermeable
material" stratgraphically adjacent to one or more aquifers. Confining
beds are much less permeable than aquifers and restrict the flow between
aquifers. |

Figure 7.2 shows the aquifer system beneath St. Petersburg. In the
U.S.G.S. study, two aguifers were identified, the surficial aquifer and
the Floridan aquifer. Two confining beds were also identified. There
is the upper confining bed of the Floridan aquifer, which separates the
surficial aquifer from the Floridan aquifer. There is also the lower
confining bed of the Floridan aquifer, which is mostly made up of Lake
City Limestone.

The Floridan aquifer can be further divided into four permeable

zones, each separated by three semi-confining beds, where semi-confining

beds are Tless permeable than the permeable zones. In this study the

four permeable zones have been labeled alphabetically where zone A is
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the shallowest within the aquifer and zone D is the deepest. Zone C is
the permeable zone in which the injection tests will take place.

Most of the aquifer parameters were obtained using pumping tests,
-~ whereby observed drawdowns were matched with the corresponding pumping
rates.

The water in the previously described aquifers is mostly saline,
with a small layer of freshwater in the overlying surficial aquifer.
Sources of the deeper saline water are the Gulf of Mexico and Tampa Bay,
whereas the source of freshwater near the surface is rainwater that
infiltrates from the surface. The salinity content ranges from 6 mg/L
in the surficial aquifer to approximately 21,000 mg/L below the bottom
permeable zone.

| Small amounts of freshwater are tapped from the surficial aquifer
for irrigation and municipal supplies; however, all water distributed by
Pinellas County and the city of St. Petersburg is pumped from as far as
40 miles inland from Pinellas County.

Injection Tests

Although the data for the injection tests are sparse and the qua-
1ity of the data 1is questionable, it is believed that these tests
provide the best available material for validation of the model.

Injection tests were run at three locations: McKay Creek, South Cross

Rayou, and southwest St. Petersburg. Well locations for the three tests

afe shown in Figure 7.3. Duration of tests ranged from 3 days at South
Cross Bayou to 91.1 days at southwest St. Petersburg. Injection rates
rahged from 650 ga]/min at McKay Creek to 4,350 gal/min at South Cross

Bayou.
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Injection Tests at McKay Creek

The injection test at McKay Creek was run for 57.1 days: water with
a chioride content ranging from 93 to 110 mg/L was injected at ban
average of 650 Qa1/min into permeable zone A. The well casings at the
McKay Cfeek test site were open for the top sixty percent of the
aquifar's thickness for well Cl, and over forty percent of the aquifer's
thickness for well C2. Water quality and water level data were
collected before, during and after the test. During the test, no
sﬁbstantial head increase was noticed; this is a result of the high
tranmissivity of the injected agquifer. Chloride content in a well 585
feet from the injection well dropped from 20,000 mg/L before the test,
to 18,000 mg/L after the test. A well directly above the injection
interval experiented no change 1in chloride content, indicating
inhomogeneity in the vertical permeability of zone A.

Injection Tests at South Cross Bayou

The South Cross Bayou injection test was run for three days by
injecting water with an average chloride concentration of 710 mg/L at a
rate of 4,350 gal/min ‘into permeable zone C. The injection well's
casing at South Cross Bayou was open over approximately the bottom 35%
of the aguifer's thickness. The chloride cdncentration of the native
water in the injection zone was 20,000 mg/L. Data such as head bqudup
and concentration changes caused by the injection are shown in
Figure 7.4. It is noted that the head buildup at South Cross Bayou was
very small, indicating a high transmissivity of the injected aquifer.

Injection Tests at Southwest St. Petersburg

The test at southwest St. Petersburg was run for 91.1 days. In

this test, treated effluent from St. Petersburg's city wastewater .
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treatment plant was injected into permeable zone C along with a tracer
(rhodamine WT). The tracer was used to make detection of injected water
in obseryation wells easier. The injection rate averaged 3,380 gal/min
>(standard deviation = 80 gal/min) for the first 9.1 days. For the
remaining 82 days the injection rate was lowered to 2,770 gal/min
(standard deviation = 150 gal/min). The average injection rate for the
entire test was 2,830 gal/min. The casing of the injection well in this
test was open approximately over the lower sixty percent of the aquifer
thickness.

Rhodamine WT was detected in a well directly above the injection
point between 0.03 to 1.2 days from the start of the test. The tracer
was also detected above the well in permeable zone B, indicating a
“short circuit" in the vicinity of the injection well. The term "short
circuit" is used since the tracer probably would not have leaked through
the upper semi-confining layer had it not been disturbed. A well 733
feet from the injection well detected the tracer at the top of permeable
zone C, but when used to sample the bottom portion of permeab’e zone C,
no tracer was detected. This indicates that the injected water
stratified due toc density differences near the top of the injection
zone. Data from the jnjection test can be seen in Figure 7.5. |

Simu?aticnvof Injection Tests Using the Fully Numerical Injection Model

Using the fully numerical injection model, computer simulations of
the injection tests at South Cross Bayou were made. Because of the
. prohibitive cost associated with a 91-day computer simulation using the
current version of this model, a simulation of the Southwest St.
Petersburg Injection Test was not done. The McKay Creek injection test

also was not modeled since results from the test showed Tittle effect of
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the injection on the aquifer. Input parameters used in the simulation

~are described 1in the previous section and Table 7.1. Although a

simuiation was not run for the southwest St. Petersburg and Mckéy Creek
injection tests, parameters for the tests are listed for completeness.

South Cross Bayou Simulation

The South Cross Bayou simulation was three days in duration;
Initial time sfeps for the numerical procedure were in increments of
0.00006 days. During the simulation, the time step was increased using
a doubling routine. The doubling routine allows the time step to be
increased during the simulation whenever the model becomes more stable
as judged by the number of iterations required for convergence. This
small time step is dictated by the stability constraints described in
Chapter 5. It can be noted that the simulated aquifer 1is very
permeable, and the grid sizes are relatively small. These two
parameters cause the stability time constraint to be very small.

The grid spacing (for both the x and 'y directions) used in this
simulation was 200 feet. The injection rate was 4,350 gallons per
minute. This 1is incorporated into the model as 20.93 feet per day of
vertical inflow over the entire area of one 200 foot by 200 foot grid
square., The transmissivity of aquifer 1 is 1.2x106 square feet per
day. The thickness of aquifer 1 is input as 312 feet. The horizontal
hydraulfc conductivity of aquifer 1 is calculated to be 3,846 feet per

day (transmissivity divided by the depth of the aquifer). Although a

vertical hydraulic conductivity was not reported, a value of 500 feet _

per day was assumed. This 1is based upon the assumption that the South
Cross Bayou site and the southwest St. Petersburg site are similar and

that the value of 500 feet per day reported at southwest St. Petersburg
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Table 7.1 Estimated aquifer coefficients for zone C
(injection zone) based on aquifer test analyses

Test Site Transmissivity Storage Storage Leakance Diffusivity
: T coefficient coefficient coefficient T/S
S from laboratory k'/b!
(ft2/d) compressibility (1/d) (ft2/d)
tests
S
S.W. St. Petersburg* 1.2 X 100 3.3 X 1074 6.0 X 10°% 2.2 x107% to 1.9 x 1073 3.6 x 10
South Cross Bayou 1.2 X 10° 2.2 X 1074 1.5 x 1004 3.7 x 107% to 1.5 x 1073 5.5 x 10°
McKay Creek 0.9 X 100 0.8 x 1074 3.1 x 10°% 6.6 X 1073 to 1.5 X 1072

11.3 X 109

* vertical hydraulic conductivity = 500 ft/day, Hickey (1986)
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applies at this site. The porosity of the aquifer is assumed to be
equal to 0.30. The USGS study does not report any values for the
dispersivity, however, a dispersivity of 0.05 feet seems to yield good
results.

The assumed values for the integrated distribution function of the
solute concentration, specific discharge, and the solute concentration
multiplied by the specific discharge function are 0.33, 0.67,-and 0.17,
respectively, based on Equation 4.13.

Comparison of Simulation Results of the Fully Numerical Model_to Test

Data

Figure 7.6 shows the simulation output values for a point at the
well for several times during the simulation. Observation of this
figure reveals that, after three days, the simulation has not reached
steady state. Analysis, using Equation 6.3, of Figure 7.6 at a time of
3.0 days shows that the simulation has not reached steady state. By
inputting into Equation 6.3, the simulated head build-up (s = 2.85 feet)
and transition zone thickness (& = 6.70 feet) at time = 3.0 days, the
expected steady state freshwater Tens thickness for these values can be
calculated (Zb = 116.23 feet). Comparing this calculated steady state
freshwater 1lens thickness to the actual simulated freshwater Tlens
thickness (Z, = 55.26 feet) reveals that the simulation has not reached

stéady state conditions. It can be seen from this simulation that the

head build-up grows rapidly in the simulation, and, as the freshwater

zone grows; the head build-up begins to slowly decrease unt11 a steady
state balance between the head ‘bui1d-up, freshwater  Jens, énd the
transition zone is reached.

Figure 7.7 shows the results at the end of the three-day South

Cross Bayou simulation for several points along the x-axis. Observation
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of Figure 7.7 shows that the simulated results are very much Tike the
actual field data.

The simulation for a point near the well (approximately_35 feet
from the well) at 3.0 days shows a freshwater lens thickness of 49.23
feet, a transition zone thickness of 7.51 feet and a head build-up of
2.62 feet. This would mean that the freshwater Tens thickness extends
to a point 22.77 feet above the bottom of well A2. The injected watar

has a chloride content of 710 mg/1. The pre-injection chloride

concentration of the aquifer is approximately 20,000 mg/1, and the

distribution function of solute concentration through the transition ‘

zone of 0.33. Using these parameters, the simulated chloride
concentration that would appear in well A2 is 9,600 mg/1. This value is
s]?ght]y higher than 1is reported in the field observation (8,800
mg/1). The difference between the actual and simulated results is

caused by several factors. The two factor affecting these results near

the injection well is probably the assumed value of the dispersion’

coefficient,

The dispersion coefficient in the simulation is probably higher
than the actual dispersion coefficient. By lowering this value, the
transition zone size will decrease, thus decreasing the chloride
concantration of the water entering the well.

Although the predicted chloride concentrations for this simulation

are slightly higher than the actual field measured values, it has been

demonstrated that good results can be produced_by the model.
A small anomaly in the transition zone value at the well appeared
in this simulation. While all other values in the transition zone grid

display the expected values, the value near the well appears to be
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smaller than expected. This phenomenon was noticed in output from the
upconing model presented by Means (1982) and in output presented by
Rubin (1986).  Although other investigators have not addressed this
anomaly, it 1is believed that it 1is not an accurate representation of
physical reality at the injection well. [t is believed that this
anomaly is a result of difficulties in accurately defining derivatives
near the well where change is rapid. Future efforts could attempt to
run the model with extremely small grid spacings. It is believed that a

finer discretization would provide the accuracy needed to eliminate the

anomaly at the well. Such runs could provide guidance to a properv

treatment of the derivatives to allow a realistic spatial increment. In
addition, other approximations could be considered. Currently, data is
lacking to adequately define the actua] behavior in this area and it may
be difficult to judge the accuracy of any further refinements. The
general shape of the freshwater lens and transition zone as they grow
with time are reasonable. The almost steady state values from the
simulation are also consistent with steady state estimates.

Simulation of Injection Tests Using the Simplified Injection quel'

Using the simplified model described 1in Section 5, computer
simulations of the injections tests at South Cross Bayou and southwest
St. Petersburg were made. The McKay Creek injection was not modeled as
resuits from the test showed little impact. VInput parameters used in

the simulation ére described earlier in this chapter and in Table 7.1.

Although a simulation was not run for the McKay Creek Injection test,

parameters for the test are listed for completeness.

Both the South Cross Bayou and southwest St. Petersburg simulations

with the modified model were run with isotropic conditions. At the time
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of the simulations, the anisotropic information from Hickey (1986) was
not available. After reviewing the results from the modified model, it
was felt that further modifications were needed before anisotfopy was
included, and therefore no additional runs were made for anisotropic
conditions using the modified model. However, one can get a sense of
the expected influence of anisotropy based on the comparison in Figure
6.9, which was actually generated using South Cross Bayou data.

South Cross Bayou Simulation

The South Cross Bayou simulation was three days in duration; time
steps for the numerical procedure were in increments of 0.1 day. The
iﬁjection rate was 4,350 gal./min. The Towest 1leakance coefficient
value wés chosen from the range given in Table 7.1. Using the smallest
1eakance coefficient will result in a calculation of the maximum
possible head buildup which will provide the most conservative estimate
of the injection well.

Results of the South Cross Bayou simulation are illustrated in
Figure 7.8.

Southwest St. Petersburg Simulation

The simulation of the injection test at southwest St. Petersburg
was 92 days in duration; time steps for the numerical procedure were in
increments of 0.1 day for the first day and were increased to increments
of 1 day after the first day of the simulation. Again the Tlowest
leakance coefficient was chosen from the range given in Table 7.1 to
provide the most conservative results possible.

Results of the southwest St. Petersburg simulation are jillustrated

in Figure 7.9.
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Comparison of Simulation Results
of the Modified Model to Test Data

To compare the computer simulation to the field data, zy (thickness
of the freshwater lens) from the simulation is plotted on Figures 7.8
and 7.9 for South Cross Bayou and southwest St. Petersburg tests,
respectively. Listed 1in Figures 7.4 and 7.5 is the data from the
injection tests at South Cross Bayou and southwest St. Petersburg,
respectively.

The results obtained from the simulation in both the South Cross
Bayou and southwest St. Petersburg situations underestimate the
infiuence of the injection'we]1 in the vicinity of the well. This
discrepancy is probably due to the assumption of only horizontal flow in
the freshwater region. By making the assumption of horizontal flow, the
influence of vertical flow is neglected; in the vicinity of the well,
vertical flow is likely to be of major influence. This 1is especially
true due to the location of the injection wells at the Bottom of the
injection zone.

Some difficulties in convergence are encountered in the region of
rapid head changes near and at the well.

It is possible that these difficulties éan be eliminated if a more
accurate - description of the drawdown in the vicinity of the well is
obtained. Work is continuing to refine the problems in the vicinity of
the well.

Figures 7.8 and 7.9 indicate vthat the general extant of the
iﬁjected water field is reasonably reproduced. Figure 7.8 (South Cross
Bayou) indicates that the well nearest the injection well is partly in
the injected water and partly in the sa]twater, This seems consistent

with the high chloride value observed there (8800 mg/1).
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CHAPTER 8
CONCLUSIONS AND RECOMMENDATIONS
Conclusions

In this report, a three-dimensional model was developed for
simulation of injection into a two-layered stratified aquifer. To
account for effects in the flow field due to a transition zone of
varying density and salt concentration bétween tne fresh and saline
layers an integral technique is used. By using an integral technique,
the appropriate equations are simplified enough to be solved using an
iterative ADI numerical scheme.

By taking advantage of the rapid stabilization of the head build-
up, simplifications were made to the model which enhanced the stability
characteristics and decreased the computer run time requirements of the °
model. Since the head bude-up stabilizes quirkly, it was possible to
calculate the head build-up directly by using available analytical
drawdown relationships. Because of the simplification of the head
build-up calculation, the overall solution procedure was greatly
simpiified by eliminating the need for an overall iterative scheme.
Also, because of the analytical calculation of the head buf]d—up, flow
veldcﬁties could  be calcu1ated directly, thus ~allowing for
simplification of(the'ca]cu1ation of the transition zone thickness.

To check accuracy of mode]s,bboth the fully numerical and modified
simulations were made with the model using input data from injection

tests in Pinellas County, Florida. Simulation output was compared to
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the actual results of the 1nje§t10n tests. .Data from the tests are
sparse and of questionable qua1ity, and therefore detailed comparisons
are difficult. However, the general features of the injection- field
seem to be adequately represented, with the performance of the numerical
model apparently superior to the modified model for these runs.

The numerical model appears to be behaving better in its current
form, and it certainly has more potential for applications where
hydraulic conditions (e.g., hydraulic conductivity) vary horizontally
and vertically. However, the modified model also shows promise and
further development should be useful. Both currently could be expected
to provide useful analyses of injection sites with proper selection of
parameters.

Recommendations

The models presented in this report provides a basis for future
refinements. It should provide the ability for users to make preli-
minary estimates of the behavior of injection fields in settings similar
to that modeied herein. There are several areas where further work is
needed, some of which is continuing now. The following topics seem most
deserving of attention in terms of their potential for most improvement
of the model.

1.  Techniques should be developed to refine the numerical portion
of the model solution in the vicinity of the well. This may lead to
guidelines for selection of timevand distanée steps, as well as possibly
. modified finite-difference'expressions.

2. The model should ‘be modified to account for partial
penetration of the well, both in terms of the expected head buildup and

in terms of the flow field attained by the injected fluid.
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3. Vertical flow effects should be incorporated into the model in
at least two ways: the assessment of chlorides added to the injected
water by the rising plume, and achieving a better description of the
actual injection field. |

4. The use of analytical calculations shows a head buildup
occurring at some distance.from the well at very short times. The model
then responds to these head buildups by showing immediate arrival of
injected water. However, there 1is quite Tikely a lag time associated
with the actual arrival of the injected water. Neglect of this feature
may lead to inaccuracies of the model when used for short duration
events. Attempts should be made to investigate this factor.

5. The effect of ﬁhe assumed profiles on predictions should be
investigated by numerical experimentation with other profiles. This
“effort should also be extended to allow integration of the profiles to
estimate chloride (or other constituent) concentrations at various
wells.

6. The effect of the assumed fTow directions should be
investigated.

7. Methods should be developed to eliminate the depression of the
transition zone which occurs near the well. It is eXpected that this
can be accomplished through improved estimates of gradients near the
well. |

8. Modify the model to handle the condition which occurs when the
traﬁsition zohe 1ntrude§ into an upper layer which has a different

hydraulic conductivity.

3
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It is believed that the model which has been developed provides a
useful tool for preliminary analysis of injection problems. It is
expected that completion of some of the recommended items described will

enhance jts use.




APPENDIX A

FULLY NUMERICAL MODEL PROGRAM LISTING




THREE DIMENSIONAL INJECTION MODEL * DENSITY STRATIFIED

CREATED 8/84 * S. LAUX, B. A. BENEDICT

MODIFIED 4/86 SJL

COMMON/INIT/ N1,M1,IXP,IYP : i -

'DIMENSION S(50, 50),SN(50,50),SE(50,50),2(50,50),ZN(50,50)
,ZE(50,50),DZ(50,50) ,XN(50,50),81(50,50)
,A(50),B(50),C(50),D(50),X(5
"DL(50.50),DLN(50,50) ,DLE (50
,DE2(50,50

- -y . - - " - - - > - " - e ;. - - - - = =l .- -

OO0
w O

* % ok o

vv

- - - - - - - " - - - - - - - . - - - -

XK1=HORIZONTAL HYDRAULIC CONDUCTIVITY,AQUIFER 1(LOWER AQUIFER)
XK1Z=VERTICAL -HYDRAULIC CONDUCTIVITY,AQUIFER 1

XK2=HORIZONTAL HYDRAULIC CONDUCTIVITY,AQUIFER 2(UPPER AQUIFER.)
B1=THICKNESS,AQUIFER 1  B2=THICKNESS,AQUIFER 2

PN=EFFECTIVE POROSITY ST=STORAGE COEFFICIENT

A1=TRANSVERSE DISPERSIVITY

XKSI=PARAMETER OF DENSITY RATIO

N=NUMBER OF X NODAL POINTS M= NUMBER OF Y NODAL POINTS
NM=NUMBER OF GRID POINTS(=N*M)

-t - - - - - - - - - - " - - . - . - - - - - -

OOOOOOOOOOOOOOOOOODOOOO0

READ(5,2222) 1D,IP,ITM,N,M,IXS,IXF,IYS,IYF
2222 FORMAT(9I5)
READ(5,2232) TMAX,DT1,TOL,DX,B2,B1,XK1,XK1Z,XK2,
*PN,A1,ST,ALF,BET,AB,AL,XKSI,Q
2232 FORMAT(F8.4,F8.6,4F8.4,3F8.3/8F8.4/F10.4)
READ(5,8764) IPRI
8764 FORMAT(I5)
C READ(5,*) ZW1,ZW2
TT=IPRI
C IMA=0
IXP=(IXS+IXF)/2
T1YP=(I1YS+IYF)/2

NM=N*1

DB=0.

IP=1

WRITE(6,10)XK1,XK2,B2,B1,PN,ST,Al,XKST ,N,M,NM ,

10 FORMAT(]_H:L /// 5X l:::::'::::-:.:::=:.===:=:.:=::===:=::==::===:=:-=::.::'/
* ,5X, "INJECTION INTO A STRATIFIED 2-LAYERED AQUIFER'/
* 5%, THREE DIMENSIONAL ANALYSIS'

* / 5X ':::::::::::::::::::=::=:=:========:=:::'

* //5X 'AQUIFER DETAILS /5X B e L L "J/,5%, ' XK1=", F9 3,
* 5X.'XK2=',F9.3,5X,'B2=',F4.0,5%, 'Bl=",F4.0/,

* 5X,'PN=',F4.2,5X,'ST=',F6.4,5X,'Al=',F5.4/,5X,'XKSI=',F5.3/,
* 5X,'NODAL AND GRID POINTS N=',6I2,5X,'M=',12,5X,'NM="',14/)

- - . - " = e e % n -t . e m - . - - . - e - o

ALF=INTEGRAL OF F*DI(ETA) BET=INTEGRAL OF L*DI(ETA)

OO0
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OO

OOOOOOOOOOOOO0n

OO0

20

40
50

60

70
80

A

-

B EEE

B=INTEGRAL OF F*L*DI(ETA)  AL=L'(0)

AL1=AL*Al

PNL=PN*BET*0.5

WRITE(6,20)ALF ,BET, AB, AL

FORMAT(//,5X, CHARACTERISTICS OF THE TRANSITION ZONE'/
J5X, ' mmm e v/

5X,'ALF=',F6.4,5X, 'BET=",F6.4,5X, 'AB=",F6.4,5X,"'AL=",
F6.3,

- 8 . - - - > - - - - - - . WS - . . = e - . . . . - . - . e - - - - - -

J),SE(I,Jd)=INIT.,FI.,AVE HEAD BUILDUP
J),ZE(I,Jd)=INIT.,FI, ,AVE THICK. OF FRESHWATER LENS
,DLE(I)=INIT.,FI.,AVE.THICKNESS OF TRANS.ZONE
(I),DE2(I)= INIT.,FI ,AVE.SQUARE THICK. OF TRANS ZONE
AVERAGE THICKNESS OF THE FRESHWATER ZONE

AVERAGE RATE OF GROWTH OF SALTWATER MOUND

RATE OF INJECTION PER UNIT AREA

- . e - - - - - - - o - - - .. - - - - " . - - o= - - - - -

S~ DD T W
Wi n=2rrNwm
nNnNZ=Z=Z=
NN S

—

~— w

Z*XK°/XK1

DN

[ O i CDOCUQOO
e »

)
m ]
[\)
Tiser s | s~e~— 11 I 1 unn o “ |l O Hou
' .

C”W*’\Uh
CU\“ INUE

SRR A s A U S e e e T L = Py ——

- - - - v " - - - . - - - - - - - - - - - = - " o —— = = = - - - " ———— - . - - . ma = - e = .

WRITE(6,60)

FORMAT(5X, ' INJECTION DISTRIBUTION',/5X,'===================='/)
N1=N-1
M1=M-1

DO 80 I=IXS,IXF

DO 70 J=IYS,IYF
XN(1,Jd)=Q

CONTINUE

CONTINUE

IF(ID.EQ.1) GOTO 88
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OO0

OO0

WRITE(6,82)

82 FORMAT(///,10X,'MAP OF INJECTION'//)
CALL DRAWL(XN,IP,DB)
GOTO 132

88 DI 130 1=20,30
00 120 K=1,2
J=20+(K-1)*6
J1=d+1
J2=0+2
J3=0+3
Jd=J+4
J5=0+5
IF(K.EQ.2) GOTO 100

WRITE(6,90)1,d,XN(1,J XN(1,91),1,02,XN(1,J2),1,J3,XN(1,J3),

),1,J1,
* 1,d4,%N(1,d4),1,d5,XN(1,J5)
90 FORMAT(3X, DN(TL T2, T2, )=t FA 2,30 N L 12,1, 112, 1) =1 FAL2
J3X,UXN(Y, 12,0, 0,12, )=" F4.2,3X, xu(' 12,',',12,')=" F4.2,
* 3K, UKN(Y,I2,0, 0,12, )= FAL2,3X, XN( Y, 12, 0, 12,0 )=,
* F4.2)
GOTO 120

100 WRITE(6,110)I,J,XN(1,d),I,J1,XN(I,J1),1,d2,XN(1,J2),1,d3,XN(I,J3)
* ,I,J4,XN(I,J4)

110 FORMAT(3X, 'XN(',12,",",12,")=" ,F4.2,3X, " XN(", 12, ", ', 12, )=",F4.2,
3K, N(Y, 12, ,12,')=',F4.2,3X,'XN(',IZ,',',I2,')=',F4.2,
x 3K, AN(, 2.0, 12,0 )=" F4.2)

120 CONTINUE
130 CONTINUE

——— - - - - - - - — - - - - = = . - = - Y . e e . = = e . . S e - . . - -

- - 0 - - — - . - - . . - - - - . - . - - - - . - . - - - —— .

132 WRITE(6,140) DX
140 FORMAT(/ 3X,'GRID INTERVALS DY=DX=',F4.0,' METERS')
N1=N-1
N2=N-2
N3=N-3
M1=M-1
M2=M-2
M3=M-3
A(1)=0.

o an - - e - - - - - - . - - - - - - - . - . - - . - - - - ——

WRITE(®, 150)DT1
150 rORMAl(// 5X, 'TIME STEP DT=',F5.3,"' DAYS',/5X,

)

WRITE(S, 160)T

160 FORMAT(//5X,'T="',F8.3," DAYS'/,5X, ' ============z====="/)
WRITE(6,170)

170 FORMAT(// 5X,'ALL PARAMETERS VANISH'/,5X,'==-===mmmmmmmmemmmeae ")
DT=DT1
DX2=DX*DX

180 CONTINUE
XKK=XK1*XK2/ (PN*(1.+XKSI))




OO0

OO0

BK=B1*XK1
IX=1
ITRY=0 v
210  CONTINUE ‘ , v L
ITRY=ITRY+1 ‘ o
IF(ITRY.LE.10) GO TO 201
IF(IT.LE.1) DT=2*DT
ITRY=0
201  CONTIMUE
T=T+DT
IF(T.GT.TMAX) GOTO 660

- - . % " = - . W . . . e M D . . A e N . S e . - - . . . - - -

i3

R=DT/DX2
XKT=XK1*R
220 IT=-1
222 IT=IT+1
IF(IT.GT.ITM) GO TO 340
BK=B1*XKl
IF(IX.EQ.2) GOTO 590

— - - - - - e . = . - - . - . . . - . e . e e M . W o . M s M e M . e e W . . . -

- - - - " - o - - - - - - - - - - - - - W - . . m wn - - . - .

SBIG=0.

DO 280 J=2,M1

DO 230 Il1= 2,J2

I=I1+1

A(I1)=.5*XKT*(BI(I-1,d)+BI(I,J)+(DLE(I-1,J)+DLE(I,J))*ALF)
230 CONTINUE

DO 240 I1=1,N2

I=I1+1

B(I1)=ST+XKT*0,5%(BI(1+1,J)+2.*BI(I,J)+BI(I-1,d)

* +(DLE(I+1,J)+2.*DLE(I,J)+DLE(I-1,J))*ALF)

D(I1) ST*S(I,J) PN*DT*DZ (1,J)+XN(1,J)*DT+XKT*0. 5*((BI(I,J+1)+
* BI(I,0)+(DLE(I LJ+1)+DLE(1,d) )*ALF)*(S(I, J+l) S(1,d))+(BI(I,J)
*  +BI(1,d-1)+(DLE(I,J)+DLE(I,Jd-1))*ALF)*(S(I,d-1)-S(I,d)))

240 CONTINUE
DO 250 I1=1,N3
I=11+1 ,
C(I1)=0,5*XKT*(BI(I,J)+BI(I+1,J)+(DLE(I+1,J)+DLE(I,J))*ALF)
250 CONTINUE '
CALL THOMAS(A,B,C,D,X,N2)
DO 260 I=2,N1
I1=1-1 :
SN1=X(I1)
SB=ABS(SN1-SN(I,J))
IF(SB.GT.SBIG) SBIG=SB
SN(I,d)=0,5*(SN1+SN(I,d))
260 CONTINUE
DO 270 I=2,N1
SE(I,J)=(S(I,J)+SN(I,J))*0.5
270 CONTINUE
280 CONTINUE
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DO 284 J=2,M1
DO 283 I=2,N1
IF{Z(1,J).LT.0.0001) GOTO 283 i
SCK=(SE(I,J)-SE(I-1,d))/DX :
SCK2=(SE(I,J)-SE(I,d-1))/DX
Jd=
1I=1
IF(I.LT.IXS)GO TO 281
IF(SCK.LT.0) II=I+
281 IF(J LT.IYS)GO TO 782
IF{SCK2.LT.0) JJ=J+1

282  CONTINUE
C TEMPORARY FIX TO REDUCE INFLUENCE OF 'DOUGHNUTING' ON DIFFERENCE SCHEME
IF(I.GT.IXS)II=I+1 :
IF(J.GT.1YS)JJd=d+1
C END OF TEMPORARY FIX *kAkhkAkkhkkhkhkhkFdhkhkhkxrdrhhkkhbhkhhkhkrrrhhkhkrhbrkkrrhbhrbhihitx
C*** BALANCED TRANS. X
DEN=PNL-XKT*AB* (SE (I+1,J)+SE(I-1,J)-2.0*SE(L,J)+XSGN*0.5*%
*  SE(II,J)-XSGN*0.5*SE(II-1,J))
DN2(I,J)=(D2(1,J)*PNL+XKT*AB*
*  (=XSGN*0.5*DN2(I1I-1,J)*(SE(II,J)-SE(II-1,J))4D
*  (SE(I,J+1)+SE(I,Jd-1)-2.*SE(I,J))+.5*(SE(I,dJ)
*  (D2(1,Jd)-D2(I,dJ-1)))-DX*ALI*XKT*SQRT((-SE(I
*  SE(II-1,d))**2+(-SE(I,JJ)+SE(I,JJ-1))**2))/DE
C*¥** END BALANCED TRANS X
IF(DN2(1,J).LT.0.) DN2(I,J)=0.
283 CONTINUE
284 CONTINUE

2(1, )
-SE(1,dJ-1))*
1,0)+

N

- - - - v " - " — - - - - = - e - - o - - v . S = . e A e e - -

C
C CALCULATION APPLIED TO X AND Y DIRECTIONS.
e e e
285 DBIG=0.
DBI2=0.
DO 288 I=2,Nl
DO 287 J=2,M1
DLN(I,J)=SQRT(DN2
DLE(I,d)=.5%(DLN({
DEZ2(1,d)=.5*{D2(1
DBl—ABS(DLN(I d) -l
DB2=ABS(DN2(1,J
IF{DBL.GT. DBIG\ DBIG DBl
IF(DBZ.GT.DBIZ) DBI2=DB2
287 CONTINUE
283 CONTINUE
Z81G=0."
DO 300 J=2,M1
DO 290 I=2,N1 . :
DZ(I,Jd)= XKlZ/((Bl-ZE(I,J))*PP*(1+XKSI))*(SE(I,J)+XKSI*(-ZE(I,J)
$ +BET*DLE(I J))) '

\/v,—\

ZN(T1,d)=Z(1, )+DT*DZ(I,J)

IF(ZV( J).LT.0.) ZN(1.J)=0.
IF(SN(I,J).EQ.0.) ZN(I,J)=O
ZE(1,9)=0. *( ( J)+Z(1,J))
BI(1.J)=B2*XK2/XK1+ZE(1,J)-DLE(I,d)



IF(BI(I,J).LE.0.0) BI{
ZB=ABS(ZN(1,d)-2(1,J))
IF(ZB.GT.ZBIG) ZBIG=Z8
290 CONTINUE
300 CONTINUE |
C IF(IT/10.NE.0.1*IT) GOTO 312
C WRITE(6,310)T,IT,1X,S81G,ZB1G,DBIG,DBI2

1,J)=0.0

C310 FORMAT(//3X,F8.5,4X,'IT=",13,3X,"'IX=",14,3X,"'SBIG=",E8.2,3X,

C  &'7BIG=',E8.2,
C * 3X,'DBIG=',E8.2,3X,'DBI2=',E8.2)
£312 CONTINUE
C IF (T.LT.0.01) GO TO 1080
C WRITE (6,1050)
C DO 1010 J=1,M
c WRITE(6,9876) (SN(I,d), I=1,N)
C1010 CONTINUE
C WRITE(6,1060)
C DO 1020 J=1,M
C WRITE(6,9876) (DN2(1,d), I=1,N)
C1020 CONTINUE
C WRITE(6,1070)
C DO 1030 J=1,M
C WRITE(6,9876) (ZN(I,d), I=1,N)
C1030 CONTINUE
C1050 FORMAT(1X,'SN')
C1070 FORMAT{1X,'ZN')
C1080 CONTINUE
IF(IT.EQ.0) GOTO 222
IF(SBIG.GT.TOL) GOTO 222
IF(1X-2) 320,330,330
320 IX=2
GOTO 380
330 IX=1
GOTO 380
340 T=T-DT
DT=0.5*DT
350 DC 370 J=

1+ZE( ,J)- DLE(I,J)
BI(I,J)=0 ‘
ZE(I,J)

—~ e

360 CONTINUE
370 CONTINUE
IF(IT.GT.ITM) GO TO 210
GOTO 210
380 DS=0.
DO 400 J=2,M1
DO 390 I=2,N1
DSS=ABS(SN(I,J)-S(I,J))

)*PN*(1+XKSI))*(SE(I,J)+XKSI*(-ZE(I,J)




390
400

410
420

OO0

561

1562
1561

OO0

- 1563

OO0

99

IF(DSS.GT.DS) DS=DSS
CONTINUE

CONTINUE

IF(DS.LT.0.00001) GOTO 660

CONTINUE
CONTINUE

- - - = - - - - " hm ey - . - - - e . . - e ws . W= = . . . . . . . . . . - —— - o -
—— - - - - - - —— o > = . - - A . - - . - - —n - - . - e > W W . . = A e wu . . S . - A . - O = - -
- - - — - - — - - - - —————— - - - = - = . = - - . = = . e - = = . . = =

DLCC=DL (IXP,IYP)
IF(DLCC.EQ.0.0) GO TO 1563
ZB=Z(IXP,IYP)
ZT= IB + DL(IXP,IYP)
IF(ZW1.GE.ZT) GO TO 1561
ETAL=(ZT-ZW1)/DL
ETA2=(ZW2-78) /DL
IF(ETA2.GT.1.0)G0 TO 1563
CW=ETAL**2 - (5./3.)*ETAL**3 + ETAL**4 -  2*ETAI**5
CW= CW - ETA2**2 + (5./3.)*ETA2**3 - ETA2%*4 +  2*ETA2%*5
CW1=2.*ETAL - ETAL**2 -2 *ETA? + ETA2**2
CW=( CW/ CWl) * 19000
WRITE(6,1562) CH
FORMAT(//,10%," CURRENT CONCENTRATION= ',F20.2)
GO TO 1563
ETA2=(ZW2-78)/DL
TF(ETA2.GT.1.0)G0 TO 1563
cWD=((2./3.) - ETA2*¥*2 - ETA2**3/3.) * DL
CWD= CWD + ZCWl -ZT
CUN= (2./15.) - ETA2*¥*2 + (5./3.)*ETA2**3
CWN= CWN - ETA2**4 +0,2*ETA2**4
CW=( CWN*DL )/ CWD
CW= CW * 19000
WRITE(6,1562) CW
CONTINUE
IF(T.LT.TT)GO TO 586
TT=TT+IPRI
IF(T.GT.6.0) DT1=0.5
IMA=IMA+1
IF (IMA.GT.IPRI) IMA=0
IF (IMA.LT.IPRI) GO TO 586
IF(T.LT.0.01) GO TO 586
IF(IX .EQ. 2)G0 TO 586




562

564

565

567
568

570 FORMAT(/2X,'NGCDE',5X,'S"',11X,'Z",8X, NODE 5%, 'S, 11X, 'Z! 8X
'NODE',5X,'S", llX ‘7 8X NODE 5X 's! 11X 'z /)

*

IF(ID.EQ.1) GO TO 568

IF(ID.EQ.2) GO TO 5544

WRITE(6,160) T
WRITE(6,562)

FORMAT(///,10X, "MAP OF HEAD BUILDUP'//)

CALL DRAW(S,IP,DB)
WRITE(6,564)

FORMAT(///,10X,'MAP OF FRESHWATER LENS'//)

IF(Z(IXP,IYP).GE.5.0) CALL DRAW(Z,IP,DB)
IF(Z(IXP,IYP).LT.5.0.AND.Z(IXP,IYP).GT.0.05) CALL DRAW1(Z,IP,DB)
IF(Z(IXP,IYP).LT.0.05) WRITE(6,561)

WRITE(6,565)
Ip=2

FORMAT(///10X,"'MAP OF TRANSITION ZONE'///)

IF(DB.GE.5.) CALL DRAW(DL,IP,DB)

IF(DB.LT.5.0.AND.DB.GT.0.05) CALL DRAW1(DL,IP,DB)

IF(DB.LT.0.05) WRITE(6,561)
IP=1

GOTO 586

WRITE(6, 570)

DO 584 1I=1, N

*

580
. 582
584

5544
5555
6555

7555
9876
586

OO0

590

DO 582 K=1,10
J=(K—1)*4+1
J1l=J+1
J2=J0+2
J3=J+3
WRITE(6,580

,I,JZ,S(I
FORMAT (4 (1
CONTINUE
CONTINUE
GO TO 586
WRITE(6,160) T
WRITE(6,562)

DO 5555 J=1,M

WRITE(6,9876) (S(I,Jd), I=1,N)
CONTINUE
WRITE(6,564)

DO 6555 J=1,M

WRITE(6,9876) (Z(I1,d), I=1,N)
CONTINUE o =
WRITE(6,565)

DO 7555 J=1,M

WRITE(6,9876) (DL(I,J), I=1,N)
CONTINUE
FORMAT(1X,21F6. 2//)

CONTINUE
GOTO 350

——— - —— - - ———— - - — - —————

$(1,J),2(1,d),1,d1,S(1,J1),Z(1,J1)
1,02),1,03.5(1,33),2(1,d3)
12.4)) -

100




C

C

DO 650 I=2,N1
DO 600 J1=2,M2
J=J1+1 '

A{J1)=.5*XKT*(BI(I,d-1)+BI(I,d)+(DLE(I,J-1)+DLE(I,J))*ALF)
600 CONTINUE
pd 610 J1=1,M2
Jd=Jd1+1
B(J1)=ST+XKT*0,5*(BI(I,J+1)+2.*BI(I,Jd)+BI(I,J-1)+
* (DLE(I,J+1)+2.*DLE(I,J)+DLE(I,J-1))*ALF)
D(J1)=ST*S(1,d)-PN*DT*DZ(I, J)+XN(I J)*DT+XKT*0. 5*(( I(I+1,d)+
* BI(I,J)+(DLE(I+1, J)+DLE(I J))*ALF) (S(I+1,J)-S(1,d))+
* (BI(I,J)+BI(I—l,J)+(DLE(I,J)+DLE(I-l,J))*ALF)
* (S(I-1,d)-S(1,d)))
610 CONTINUE
DO 620 J1=1,M3
J=J1+1
C(J1)=0.5*XKT*(BI(I,Jd)+BI(I,J+1)+(DLE(I,J+1)+DLE(I,J))*ALF)
620 CONTINUE
CALL THOMAS(A,B,C,D,X,M2)
DO 630 J=2,M1
Jl=Jd-1
SN1=X(J1)
SB=ABS(SN1-SN(I,J))
IF(SB.GT.SBIG) SBIG=SB
SN(I,Jd)=0.5*(SN1+SN(I,4d))
630 CONTINUE
DO 640 J=2,M1
SE(I,J)=0.5%(S(I,J)+SN(I,d))
640 CONTINUE -
650 CONTINUE

DO 655 I=2,N1
DO 654 J=2,M1

IF(Z(I : J).LT.0.0001) GOTO 654
SCK=(SE(I,J)-SE(I,J-1))/DX
SCK2=(SE(I,J)-SE(I-1,J))/DX
I1=I
JJ-_-J

IF{J.LT.IYS) GO TO 651
[F{SCK.LT.0) JJd=J+1

651 IF{I.LT.IXS) GO TO 653

IF{SCK2.LT.0) II=I+1

653 CONTINUE

TEMPORARY FIX (SAME AS X )
[F(J.GT.1YS)Jdd=d+1

- IF(I.GT.IXS)II=I+1

END OF TEMPORARY FIX

C*** BALANCED TRANS. Y

DEN=PNL-XKT*AB* (SE (1,J+1)+SE(I,J-1)-2.0%SE(I,J)+XSGN*0, 5*
*  SE(I,Jd)-XSGN*0.5%SE(1,JJ-1))
DN2(1,d)=(D2(1,J)*PNL+XKT*AB*

(=XSGN*0.5*DN2(1,JJJ-1)*(SE(I,Jd)-SE(I,JJ-1))+D
(SE(1+1,J)+SE(I-1,d)-2.*SE(I,d))+.5%(SE(II,J)-S
(D2(11,d)-D2(11-1,J)))-DX*AL1*XKT*SQRT((-SE(II,
SE(11-1,J))**2+(-SE(I,Jdd)+SE(I,JdJ-1))**2))/DEN

2(1,9)*
E(II-1,J))*
J)+

* ¥ F
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C*** END BALANCED TRANS. Y
IF(DN2(I,d).LT.0.) DN2(1,J)=0.
654 CONTINUE
655 CONTINUE : e
GOTO 285 S :
660 CONTINUE
STOP
END
SUBROUTINE THOMAS SOLVES A SYSTEM OF LINEAR EQUATIONS
REPRESENTED BY A TRIDIAGONAL MATTRIX
SUBROUTINE THOMAS(A,
DIMENSION A(N),B(N)
ALFA(1)=B(1)
SI(1)=D(1)
DO 20 I=2,N
A(I)/ALFA(I-1)
A'FA(I)— (1)-E*C(I-1)
SI(I)=D(I)+E*SI(I-1)
20 CONTINUE
X(N)=SI(N)/ALFA(N)
N1=N-1
DO 30 I=1,N1
J=N-1
X(J)=(SI(J)+C(J)*X(J+1))/ALFA(J)
30 CONTINUE
RETURN
END

OO0

- - - - e D = = - A - . T . - - - . - = - - - - S . M . . . —n . . . - - -

SUBROUTINE DRAW{W,IP,DB)

COMMON/INIT/N1 ,M1,IXP,IYP

CHARACTER *3 AA,BB,CC

DIMENSION W(50,50),BB(50),AA(50),CC(50) '

DATA CC/O l’|+1+l,l 2 I,I+3+I,l 4 I,I+5+l’l6 I’I+7+|’I8I,
l+9+l,i IOi,:+11l’i 12|’|+13|,| 14l,l+15l,l 16|’l+17|’l 18‘,
x+191,| 201,|+21|’| 22|’a+23|’| 24l’l+25l’l 26','+27',' 28',
G+29i,l 30I’I+31l’l 32|,I+33l’| 34I’I+351,l 36l’l+37l’l 381’

l+39|,l 40l’l+411,| 42l’l+43l’| 44l,|+451’| 461,|+47I,l 48l’
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X % ok

X+ ok

DO 10 I=2,N1

BB(I)="+++'
10 CONTINUE

WRITE(6,20) (BB(I),I=1,N)
20 FORMAT(4OA3)

BB(1)="' + "

BB(N)="' + "'

DO 60 J=2,M1




OO0

30
40

25
60

70

75
80

X2=X1+1

IF(W(I,J).LT.X2,AND.W(I,d).GE.X1) BB(I)=CC(K)

CONTINUE

CONTINUE

WRITE(6,20) (BB(I),I=1,N)
FORMAT (' ")
WRITE(6,25)

CONTINUE

BB(1)="' ++'

BB(N)="++ '

DO 70 I=2,N1

BB(I)="+++'

CONTINUE

WRITE(6,20) (BB(I),I=1,N)
IF(IP.EQ.2) GOTO 75

WRITE(6,80) W(IXP,IYP)

RETURN
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WRITE(6,80) DB

FORMAT(//5X, '"MAXIMAL ORDINATE=',F8.3,' METER'//)

RETURN

END

SUBROUTINE DRAW1 MAPS PUMPAGE BY APPLYING THE TYPEWRITER

SUBROUTINE DRAW1(W,IP,DB)

COMMON/INIT/N1,ML,IXP,IYP

CHARACTER *3 AA,BB

DIMENSION W(58,50),BB(50),AA(50)

DATA AA/! S R R - R P A - L
* 'o.9' ) '1, ','1.1t, .20, 1.3, '1.410 01,50, 1.60 ,1 1.7, 1.8,
* '1.9','2. ','2.1','2.2','2.3",'2.4",'2.5",'2.6','2.7"','2.8",
* '2,9','3, ','3.,1','3.2','3.3','3.4','3.5",'3.6"',"'3.7','3.8",
* '3.9',)'4, ','4,1",'4.2','4.3",'4.4" ,'4,5" ,'4,6",'4,7",'4.8",
* '4.9Y/

BR{1)=" ++'

N=N1+1

M=M1+1

BE(N)="++ '

DG 10 I=2,N1

BB(I)="+++'

CONTINUE
WRITE(6,20) (BB(I),I=1,N)

FORMAT (40A3)

BB(1)=" + '

BB(N)=" + "'

DO 60 J=2,M1

DO 40 I=2,N1

DO 30 K=1,50 -

AK=K

X=.1%AK-0.05



30
40

25
60

70

75

X1=X-0.10
I[F(W(I,J).LT.X.AND.W(I,Jd).GE.X1) BB(I)=AA(K)
CONTINUE

CONTINUE -
WRITE(6,20) (BB(I),I=1,N)
FORMAT (! ")

WRITE(6,25)

CONTINUE

BB(1)=" ++'

BE(N)="++ "'

DO 70 I=2,N1

BB(I)="'+++'

CONTINUE

WRITE(6,20) (BB(I),I=1,N)
IF(IP.EQ.2) GOTO 75
WRITE(6,80) W(IXP,IYP)
RETURN

WRITE(6,80) DB

FORMAT(//5X, "MAXIMAL ORDINATE=',F8.3,"' METER'//)
RETURN

END
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A MODIFIED NUMERICAL-ANALYTICAL MODEL FOR THE SIMULATION
OF AN INJECTION INTO A CONFINED DENSITY-STRATIFIED AQUIFER.

LIST OF ARRAYS v . e

SN,SE,S= PRESENT,MEAN,PAST VALUES OF HEAD-BUILDUP
IN,ZE,Z= PRESENT,MEAN,PAST VALUES OF FRESHWATER LENS
DZ= RATE OF CHANGE OF THICKNESS OF FRESHWATER LENS
DN2,D2=PRESENT,PAST SQUARED THICKNESS OF THE TRANSITION ZONE
DLN,DLE,DL= PRESENT,MEAN,PAST THICKNESS OF THE
TRANSITION ZONE

DIMENSION SE(50,50),5(50,50),ZN(50,50),ZE(50,50),2(50,50)

DIMENSION DZ(50,50).DN2(50,50),DLN(50,50) ,DLE (50,50),0L(50,50)

DIMENSION D2(50,50)

COMMON /NM/ N,M

COMMON /DEL/ DX,DY,TIME

COMMON /PARAM/ T,STO

COMMON /DD/ SN(50,50)

COMMON /NEW/ B1,B,XK

COMMON /GOOD/ I11(10),JJdJ(10),QWELL(10),JT

COMMON /MOI/ SXM(50,50),SXP(50,50),5YM(50,50),5YP(50,50)

COMMON /HEY/ XD,YD

****************************************************

INPUT GRID DATA

N= NUMBER OF X-DIRECTION NODES M= NUMBER OF Y-DIRECTION NODES
DX= DISTANCE BETWEEN X-DIR NODES DY= DISTANCE BETWEEN Y-DIR NODES
DT= TIME INCREMENT
TIMAX= MAXIMUM TIME MODELED
XD= X-DISTANCE USED FOR FINITE-DIFFERENCE APPROXIMATION
YD= Y-DISTANCE USED FOR FINITE-DIFFERENCE APPROXIMATION
drxhkkkxhkdkhkrrrdhrhkrhkhrhhkhhkrdhhkrhrrhhxhdrhkhhbhrrbhkrohrrhriirrh
READ(5,200) N,
WRITE(6,400) N,M
READ(5,205) DX,DY,DT,TIMAX
WRITE(6,410) DX,DY,DT,TIMAX
READ(5,207) XD,YD
WRITE(6,412) XD,YD

KARIERSAAkKFhAR AR AT AhhkhkdhhkxAdddhhkhkhhhkhrhhhkrhkkirhhhikiix

INPUT AQUIFER DATA

T= TRANSMISSIVITY OF AQUIFER

STO= STORATIVITY OF AQUIFER

Bl= THICKNESS OF AQUIFER

B= THICKNESS OF SEMI-CONFINING FORMATION
XK= VERTICAL CONDUCTIVITY OF ScMI CONFINING FORMATION
PN= POROSITY OF AQUIFER

BET= INTEGRAL OF L(ETA)*D(ETA)

AL= L'(0)

Al= DISPERSIVITY

XKSI= DENSITY RATIO

AB= INTEGRAL OF F(ETA)*L(ETA)*D(ETA)

khkkhkhkhkhkhkhkhkrrdrrhxhkhkrhhkhkdrAhkdhkhkhhhkrhkdrdhrhrrrkkhkhkkhtt

READ(5,210) T,STO
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WRITE(6,420) T,STO

READ(5,220) B1,B,XK

WRITE(6,430) B1,B,XK

READ(5,250) PN,BET,AL,Al,XKSI,AB

WRITE(6,440) PN,BET,AL,Al,XKSI,AB - e

dkkhdhhkhkhkhkkhkkrkhhhhkhhrkhrhrdhkhhhhkhkhkhkrkhkkrhrrxkorrhkxrx

INPUT WELL DATA

JI= NUMBER OF WELLS TO BE INPUT
III(IRD)= X-COORDINATE OF WELL IRD
JJJ(IRD)= Y-COORDINATE OF WELL IRD
QWELL(IRD)= INJECTION RATE OF WELL IRD

FHEREIIARERAkEAREA ARk FTA AR EA T kX ddhhkhddkdrhdxddrhkhrdrhdrhhrrrx

READ(5,230) JI

WRITE(6,450) J1I

DO 2 IRD=1,JI

READ(5,240) ITI(IRD),JJJ(IRD),QWELL(IRD)
WRITE(6,460) III(IRD),JJJ(IRD),QWELL(IRD)
CONTINUE
PNL=PN*BET*0.5

‘AL1=AL*Al

XKK=T/(B1*PN*(1.0+XKSI))
M1=M-1
N1=N-1
INITIALIZE VECTORS AND ARRAYS

OCOO !l I Ol OO
e o ¢ OO O o
OO OO - C)E) [ Y e}

O s~ Il ~O Il Ul
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CONTINU
CONTINUE
ICNT=0
ISKIP=0
TIME=0.0

INCREMENT TIME

TIME=TIME+DT
XKT=T*DT/(BL*DX**2)
AK=T*DT*AB/B1
ICNT=ICNT+1
SBI1G=0.0
IF(ICNT.GE.3) ICNT=1
IF(ISKIP.EQ.1) GO TO 25

CALCULATE HEAD-BUILDUP ANALYTICALY FOR PRESENT TIME-STEP
CALL HANT
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DO 20 J=1,M
DO 10 I=1,N
SB=ABS(SN(I,9)-5(1,J)) »
IF(SB .GT. SBIG) SBIG=SB : S
SE(1,J)= ( (I,J) $(1,9))/2.0
S(1,0)=SN(1,J)
10 CONTINUE

20 CONTINUE
IF(SBIG.LT.0.01) ISKIP=1
IF HEAD-BUILDUP REACHES STEADY-STATE, DO NOT RECALCULATE
HEAD-BUILDUP
IF(ISKIP .EQ. 1)WRITE(6,22) '
22 FORMAT(1X,' ***w****************'/' STEADY STATE REACHED'/
$ ! kxhkkhkkkhkdkkhkkixkkkhkkixx! )
25 DO 40 J=2,M1
DO 30 I=2,N1
Ji=J
11=]
SCK=(SN(I,J)- SN(I 1,J))/DX
SCK2=(SN(I,d)-SN(I,d-1))/DY
CALCULATE VELOCITIES (HEAD-GRADIENTS) USING VARIABLE-
SPACING FINITE DIFFERENCE APPROXIMATION
DSDX=(SN(I,J)-SXM(I,J))/XD
DSDY=(SN(1,J)-SYM(I,d))/YD
D2DX=(SXP(I,d)=2.0%SN(1,J)+SXM(T,J))/XD**2
D2DY=(SYP(I,J)-2.0*SN(I,J)+SYM(I,Jd))/YD**2
CHECK SLOPE OF HEAD-GRADIENT FOR SYMMETRY CONTROL
F(SCK.LT.0) DSDX=(SXP(I,J)-SN(I,J))/XD
F(SCK.LT.0) II=I+1
IF(SCK2.LT.0) DSDY=(SYP(I,J)-SN(I,J))/YD
F(SCK2.LT.0) JJ=J+1 -
CALCULATE THE SQUARED THICKNESS OF THE TRANSITION ZONE
DN2(1,d)=(D2(I,J)*PNL+AK*(D2(1,J)*(D2DX+D2DY)
$ +0.5*DSDX*(D2(11,d)-D2(11-1,J))/DX
$ +0.5*DSDY*(D2(1,JJ)-D2(1,dJ-1))/DY)
$ -AL1*AK/AB*SQRT(DSDX**2+DSDY**2))/PNL
IF(TIME.LT.7.1.0R.TIME.GT.20.) GO TO 30
IF(U.LT 9.0R.J.GT.11) GO TO 30
1»(* .9.0R.1.GT.11) GO TO 30
J,11,dJ,D2(1,d),D2(11,d),D2(
Z1).DSDX,DSDY,D2DX ,D2DY ,DN2
13,' J9=',13,"' II=',13,"' JJ='
=!,F8.3," D2(11-1,J)=',F8.3,
1)="',F8.3/' DSDX=',F10.5," DSD
,' D2DY=',F10.5,' DN2(I,J)="',F8.3)
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30 CONTINUE
40  CONTINUE
DO 100 J=2,M1
DO 90 I=2,N1
IF(DN2(1,J).LT.0)
DLN(I,J)=SQRT (DN2
Z(
J

IF(DLN(I,J).GE.
DLE(I,J)=(DLN(I,
DL(I,J)=DLN(I,J)
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D2(1,J)=DN2(1,J)
78Z=ZN(1,J)

ITERATIVELY CALCULATE THE THICKNESS OF THE FRESHWATER LENS -
DO 85 JIT=1,20 ’

DZ(I,d)=XKK/(B1-ZE(T,Jd))*(SN(1,d)+XKSI*(-ZE(1,J)
$ +BET*XKSI*DLE(I,d)))
IN(1,d)=2(1,d)+DZ(1,J)*DT
ZB=ABS(ZN(1,J) - ZBZ)
ZE(I,J)=(ZN(I J) + 2(1,d))/2.0
WRITE(6,555) DZ(1,J),ZN(1.9),2(1,d),282,Z8,2E(1,d),1,d,J1T
$ ,DLE(I,J),DLN(I,J),DL(I,d),BET,XKSI,XKK,XKT
FGRVAT(lX ' Dz=',F7.2,' IN=',F7.2,' Z=',F7.2,' ZIBZ=',F7.2,
$ 1 o7R=',F7.2,' ZE=',F7.2,' 1=',12.' J='.12,' JIT=',I2
$ /' DLE=', F10. 2, DLN=" ,F10.2,' DL=',F10.2,' BET=',F6.4,
$ ' XKSI='.F6.4," XKK=',F10.1, XKT=',F12.2)

IF(zB .LT. 0.01) GO TO 87
Z8Z=IN(1,J)
CONTINUE
WRITE(6,86) I,d
FORMAT(1X,' DZ DID NOT CONVERGE (20 IT) AT I=',I3,' J=',I3)
Z(1,d)=IN(1,J)
CONTINUE
CONTINUE
IF(TIME.GE.1.0) DT=1.0
IF(TIME.LT.0.184) GO TO 5
IF(ICNT.EQ.1) GO TO 5
PRINT CYCLE
WRITE(6,299) TIME
DO 106 J=1,M
WRITE(6,300) (S(I,d), I=1,N)
CONTINUE
WRITE(6,310)
DO 107 J=1,M
WRITE(6,320) (DL(I,d), I=1,N)
CONTINUE
WRITE(6,330)
DO 108 J=1,M
WRITE(6,340) (Z(I,Jd), I=1,N)
CONTINUE
IF(TIME.LT.TIMAX) GO TO 5
STOP
FORMAT(212)
FORMAT (2F6.,1,F7.3,F6.1)
FORMAT (2F7.3)

FORMAT(F10.2,F7.5)
FORMAT (2F6.1,F8.4)
FORMAT (13)

(
(
175
FORMAT(212,F10.1)
FORMAT(F4.2,F6.4,2F6.3,F5.3,F8.4)

(

(

(

(

(

FORMAT(1X//' HEAD BUILDUP AT TIME=',F10.3//)
FORMAT(1X,50F6.3)

FORMAT(1X//' THICKNESS OF TRANSITION ZONE'//)
FORMAT(1X,50F6.3)

FORMAT(1X//' PENETRATION OF FRESHWATER LENS'//)
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340 FORMAT(1X,50F6.3)
400 FORMAT(1X,' N=',I2,' M=',I2)
410 FORMAT(1X,' DX=',F6.1,' DY=',F6.1,' DT=',F6.2,' TIMAX=',F6. 2)
412 FORMAT(1X,' XD=',F8.4,' YD=',F8.4)
420 FORMAT(lX ' T=',F10.1,' S=',F10.6)
430 FORMAT(1X.' Bl=',F10.1,' B=',F10.1,' XK=',F10.4)
440 ‘DRMAT(IX,' PN=',F6.4,' BET=',F6.4,' AL=',F6.3,' Al=',F7.4/
$ ' XKSI=',F6.3,' AB=',F8.4)
450 FORMAT(1X,' JI=',14)
460 FORMAT(1X,' III=',I4,' JJdJ=',I4,' QWELL=',F10.1)
END
SUBROUTINE HANT
SUBROUTINE CALCULATES HEAD-BUILDUP IN AQUIFER USING
ANALYTICAL RELATIONSHIPS
COMMON /DD/ DOWN(50,50)
COMMON /NM/ N,M
COMMON /DEL/ DELX,DELY,TIME
COMMON /PARAM/ T,STO
C WRITE(6,200) STO
C200 FORMAT(1X,' STO=',F10.5)
CALL BEGIN
CALL CONST
CALL BDAY
WRITE(6,100) T,STO
WRITE(6,110) DELX,DELY
RETURN
C100 FORMAT(LX,' TRANSMISSIVITY=',F10.1/' STORATIVITY=',F10.4)
C110 FORMAT(1X,' DELX=',F10.2/' DELY=',F10.2)
END
SUBROUTINE BEGIN
C SUBROUTINE SETS UP REQUIRED SPATIAL VECTORS
COMMON /NM/ N,M
COMMON /DEL/ DELX,DELY,TIME
COMMON /XY/ %(50),Y(50)
COMMON /PARAM/ T,STO
DO 5 I=1,N
X(1)=(1-1)*DELX
5 CONTINUE |
DG 7 J=1,M
 y(93=(3-1)*DELY
7 CONTINUE
RETURN
END
SUBROUTINE CONST

(e N ep]

[ N ep]

OO

COMPUTE CONSTANTS

IMPLICIT COMPLEX (C)

COMMON  /MATH/ PI, EPS

COMMON  /OMEGA/ COMREF, CC
c

c=(0.,1.)

cc=(0.,0.)

PI=4,0*ATAN(1.0)
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111

EPS=1.0
EPS=EPS/2.0
EPSO=EPS+1.0
IF (EPS0.GT.1.0) GOTO 1 : e
RETURN v :
END

SUBROUTINE BDAY

COMMON /PUSH/ RB

COMMON /NEW/ B1,B,XK

COMMON /GOOD/ I1I(10),JJJ(10),QWELL(10),JI

COMMON /NM/ N,M

COMMON /DEL/ DELX,DELY,TIME

COMMON /XY/ X(50), Y(50)

COMMON /PARAM/ T,STO

COMMON /MATH/ PI,EPS

COMMON /DD/ DOWN(50,50)

COMMON /MOI/ SXM(50,50),SXP(50,50),SYM(50,50),SYP(50,50)

COMMON /HEY/ XD,YD

HALF=35.0
DO 5 J=1,M
D0 3 I=1,N
DOWN(I,J)=0.00
SXP(1,J)=0.00
SXM(I,J)=0.00
SYP(1,J)=0.00
SYM(1,J)=0.00
CONTINUE
CONTINUE
XK1=T/B1
K=0
INCREMENT INJECTION WELL
K=K+1
II=IT1(K)
JJ=0dJ (K)
QW=QWELL (K)
XW=X(11)
YW=y {JJ)
CALCULATE VALUES FOR EACH POINT ON SPATIAL GRID
DG 30 J=1,M
DO 20 I=1,N
CALCULATE RADIUS AT AND AROUND DESIRED GRID-POINT
R=SQRT ( (X (I)=XW)**2+ (Y (J)-YW)**2)
IF(R.LT.HALF) R=HALF
RXP=SQRT ( (X (1)+XD=XW)**2+(Y (J)-YW)**2)
TF(RXP.LT.HALF) RXP=HALF -

RXM=SQRT ( (X (I )=XD=XW)**2+(Y(J)-YW)**2)
IF(RXM.LT.HALF) RXM=HALF
RYP=SQRT ( (X (1)=XW)**2+ (Y (J)+YD-YW)**2)
TF(RYP.LT.HALF) RYP=HALF
RYM=SQRT( (X (I)=XW)**2+ (Y (J)-YD-YW)**2)
IF(RYM.LT.HALF) RYM=HALF
AMULT=SQRT (XK/ (XK1*B1*B))
CALCULATE LEAKANCE PARAMATER AT AND AROUND GRID-POINT
(FIRST WELL FUNCTION PARAMETER)




RB=R*AMULT

RBXP=RXP*AMULT

RBXM=RXM*AMUL T

RBYP=RYP*AMULT

RBYM=RYM*AMULT

BMULT=STO/ (4.0*T*TIME)

CALCULATE SECOND WELL FUNCTION PARAMETER

U=R**2*BMULT

UXP=RXP**2*BMULT

UXM=RXM**2*BMULT

UYP=RYP**2*BMULT

UYM=RYM**2*BMULT

C CALCULATE WELL FUNCTION AT AND AROUND A GRID POQINT
IF(RB.GT.3.0)CE=XCOEF (U)
IF(RB.LE.3.0)CE=XCOEF2(U)

(]

RB=RBXP
IF(RB.GT.3.0)CXP=XCOEF (UXP)
IF(RB.LE.3.0)CXP=XCOEF2 (UXP)
RB=RBXM
IF(RB.GT.3.0)CXM=XCOEF (UXM)
IF(RB.LE.3.0)CXM=XCOEF2 (UXM)
RB=RBYP
IF(RB.GT.3.0)CYP=XCOEF(UYP)
IF(RB.LE.3.0)CYP=XCOEF2 (UYP)
RB=RBYM

IF(RB.GT.3.0)CYM=XCOEF (UYM)
IF(RB.LE.3.0)CYM=XCOEF2 (UYM)

| CMULT=QW/ (4.0*PI*T)

C CALCULATE HEAD-BUILDUP AT AND AROUND GRID-POINT
DOWN(I,Jd)=CE*CMULT+DOWN(I,J)
SXP(I,d)=CXP*CMULT+SXP (I,
SXM(1,Jd)=CXM*CMULT+SXM(I,
SYP(1.d)=CYP*CMULT+SYP (I,

(I
0

)
)
~SYM(I,J)=CYM*CHULT+SYM z

C WRITE(6, 5432) I,J,R,RB,U,CE,DOWN(I,J)
C5432 F“RMAT(lX "= ',13 N ,13,' R=',F10.3,"' RB=',E10.3,"' U=",
C $ E10.3,' CE“’,ElO 3, DONN“ F10.3)
20 CONTINUE
30 CONTINUE
C WRITE(6,150) TIME
C B0 70 Jd=1,M
c NRITE(5,140) (DOWN(I,J), I=1,N)
C70  CONTINUE

IF(K.LT.JI) GO TO 10

RETURN

C150 FORMAT(1X,'DRAWDOWN AT TIME=',F10.2)

Cl40 FORMAT(1X, 50F6. 2)

~ END

DOUBLE PRECISION FUNCTION XCOEF(U)
SUBROUTINE CALCULATES THE WELL FUNCTION FOR A LEAKY AQUIFER
GIVEN INPUT PARAMETERS OF U AND RB

THIS SUBROUTINE IS ACCURATE IN THE FOLLOWING RANGE:

OO0
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OO0

OO E=O

FOR RB > 1.0 ACCURACY WITHIN 10%
FOR RB > 10.0 ACCURACY WITHIN 1%
REAL*8 U,RB,XCOEF
COMMON /MATH/ PI,EPS
COMMON /PUSH/ RB

XCOEF=DSQRT(PI/(2*RB))*DEXP(-
$ *DERFC(-(RB-2*U)/(2*DSQRT(U)
RETURN
END
DOUBLE PRECISION FUNCTION XCOEF2(U)

SUBROUTINE CALCULATES WELL FUNCTION FOR INPUT PARAMETERS

RB)
))

WELL FUNCTION FOR A LEAKY AQUIFER--USING NUMERICAL
INTEGRATION OF THE WELL FUNCTION

~INPUT GUIDE

INPUT IS PASSED TO SUBROUTINE IN THE CALL STATEMENT
AND IN A COMMON STATEMENT

RB= PARAMETER # 2.... PASSED THROUGH COMMON
WILL CALCULATE THE WELL FUNCTION FOR SPECIFIC PARAMETERS

THIS SUBROUTINE CAN BE SUBSTITUTED BY ANY SUBROUTINE THAT
CALCULATES THE WELL FUNCTION GIVEN THE NECESSARY INPUT
PARAMETERS.
REAL*8 U,RB,XCGEF2,ANS
EXTERNAL FFX
COMMON /PUSH/ RB
AA=20.0
EPSS=0.05
MAXIT=25
CALL SCHEME TO NUMERICALLY INTEGRATE THE WELL FUNCTION
CALL QAO4AD(ANS,U,AA,EPSS,MAXIT,FFX)
XCOEF2=ANS
RETURN
END
DOUBLE PRECISION FUNCTION FFX(X)

SUBRQUTINE SUPPLYS THE WELL FUNCTION TO SUBROUTINE QAO4AD

REAL*8 RB,X,A,FFX
COMMON /PUSH/ RB
A=RB**2/ (4, 0%X)
A=X+A

© FFX=DEXP(-A)/X
RETURN

END .

QAQ4AD - A SUBROUTINE TO APPROXIMATE

AA
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3
C I F(X)DX,
4
C BB o
: ,
c
6
C USING AN ADAPTIVE 3-POINT GAUSSIAN INTEGRATION SCHEME.
7
c
8

SUBROUTINE QAO4AD(ANS,AA,BB,EPSS,MAXIT,F)
9

IMPLICIT REAL*8 (A-H,0-Z)
10

REAL*8 R(30),B(30),B1(30),A1(30),EPS(30),EST2(30),EST3(30),FH(30),
11

1FV{30),F3(30),F4(30),F5(30),F6(30)
12

REAL*S F
13

DIMENSION J(30)
14

COMMON/QAQ48D/DIVD,LPD,NFD,ERREST
15

COMMON /QA04B/DIVS,LPS,NFS,ESTS
16

REAL*4 DIVS,ESTS,SANS,SAA,SBB,SEPS
17
C
18
C THE ARGUEMENT LIST IS AS FOLLOWS:-
19

C ANS  ON ENTRY:UNDEFINED.ON RETURN:SET BY THE SUBROUTINE TO THE

20

C APPROXIMATICN OF THE INTEGRAL I.

21

C AA ON ENTRY:SET BY THE USER TO THE UPPER LIMIT OF THE INTEGRAL.
22

C ON RETURN:NO CHANGE.

23 ' , :
C BB ON ENTRY:SET BY THE USER TO THE LOWER LIMIT OF THE INTEGRAL I.
24 o ‘

C ON RETURN:NO CHANGE.

25 : » ' . :
C EPSS ON ENTRY:SET BY THE USER TO THE RELATIVE ACCURACY REQUIRED.
26 ' _ e
C ON RETURN:NO CHANGE.

27

C

28

C MAXIT ON ENTRY:IS THE MAXIMUM NO. OF ITERATIONS TO BE ALLOWED.

29

C (LE.30) ON RETURN:CONTAINS THE MAXIMUM NO. OF ITERATIONS




30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53

54
55

56

F

ACHIEVED.

IS THE FUNCTION F(X) TO BE INTEGRATED.MUST BE SET BY THE

USER.

P AND Q ARE ONE HALF OF THE THREE POINT GAUSS-LEGENDRE WEIGHTS.

DATA P,Q /4.444444444444444D-01,2.777777777777778D-01/

R(K)=R**K,WHERE R=1-SQRT(15)/5 USED FOR GENERATION OF POINTS OF

SUBDIVISION.

DATA R(1)/2.254033307585167D-01/,R(2)/5.080666151703326D-02/,

1R(3)/1.145199073065985D-02/,R(4)/2.581316854506389D-03/,

2R(5)/5.818374167488376D-04/,R(6)/1.311480916951191D-04/,

3R(7)/2.956121669070321D-05/,R(8)/6.663196703358761D-06/,

4R(9)/1.501906730436233D-06/,R(10)/3.385347795289606D-07/,

5R(11)/7.630686588342781D-08/,R(12)/1.
6R(13)/3.876897157171633D-09/,R(14)/8.
7R(15)/1.969722016007677D-10/ ,R(16)/4.
8R(17)/1.000749997499504D-11/,R(18)/2.
9R(19)/5.084476638612921D-13/,R(20)/1.
1R(21)/2.583252835692698D-14/,R(22) /5.

2R(23)/1.312464524359553D-15/,R(24)/2.

3R{25)/6.668194084224985D-17/,R(26)/1.

© 4R(27)/3.387886797671025D-18/ ,R(28)/7.

5R(29)/1.721272177872976D-19/,R(30)/3.

719982195527138D-08/,
738655322347104D-10/,
439819030765107D-11/,
255723826929655D-12/,
146057969507219D-13/,
822737933565171D-15/,
958338752930355D-16/,
503033156728549D-17/,
6364096842785390-19/,
879804820345346D-20/

S=(1-R)/R.USED FOR GENERATION OF POINTS OF SUBDIVISION.

DATA S/3.436491673103706D00/




57
58
59
60

61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

90

DIV IS ADAPTIVE DIVISOR OF EPS(I)

DIV=DIVD

LP=LPD

TERRC=0

ERREST=0.DO
IF(MAXIT.GT.30)MAXIT=30
I1=1

ANS=0D0

J(1)=4

A=AA

BT=BB

R1=BB-AA

R2=0.1127016653792583D0*R1
R2=(1-SQRT(3/5))/2*R1

FU=P*F (AA+R2)

FV(1)=P*F(5D-1*(AA+BB))

Fle(1)=P*F (BE-R2)

EST=R1*(625D-3%(FU+FW(1))+FV(1))

~ ABSA=DABS(EST)

10

EPS(1)=EPSS
IMAX=1
K=1

I=11
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84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

103

105
106
- 107

109

110

104

108

117

[F(I.GT.IMAX)IMAX=I
FCRM GAUSSIAN SUMS AND TEST.
R1=R(K)*(BT-A)
A1(I)=A+R1
B1(I)=A+S*R1
R2=2D-1*(B(1)-A)
W1=A+R2
U3=B(I)-R2
F1=F(Al(I)-R2)
F2=F (W1)
F3(1)=F(2D0*W1-5D-1*(A+A1(1)))
F4(1)=F(2D0*U3-5D-1*(B(I1)+B1(I)))
F5(1)=F(U3)
F6(1)=F(B1(I)+R2)
NF=NF+6
EST1=R1*(Q*(F1+F2)+FU)
EST2(I)=(BL(I)~AL(I))*(Q*(F3(I1)+F4(1))+FV(I))
EST3(I1)=R1*(Q*(F5(I)+F6(1))+FW(I))
SUM=EST1+EST2(I)+EST3(I)‘
A83A=ABSA+DABS(EST1)+DABS(EST2(I))+DABS(EST3(I))—DABS(EST)
TF (DABS{SUM-EST).LE.EPS(I)*ABSA)GO TO 20
IF NO. OF ITERATIONS ACHIEVED IS GREATER THANVNO. REQUESTED;
PRINT DIAGNOSTIC AND RETURN.

IF(I.GE.MAXIT)GO TO 70

DEFINE LEFTMOST SUBINTERVAL.
K=K+1

[1=1+1
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B(I1)=A1(I)

111

FW(II)=P*F2.
112 rmach

FV{II)=FU ’
113

FU=P*F1
114

EST=EST1
115

EPS{II)=EPS(I)/DIV
116

J(II)=1
117

GO TO 10
118
C WHEN ACCURACY IS REACHED AT ONE LEVEL,PROCEED TO NEXT
119
C APPROPRIATE LEVEL.
120

20 JJ=J (1)

121

ERREST=ERREST+DABS (SUM-EST)
122

I=I-1
123

GO TO (30,40,50,60),JJ
124
C DEFINE MIDDLE SUBINTERVAL.
125

30 ANS=ANS+SUM

126

K=1
127

II=I+1
128

A=A1(1)
129

B(II)=B1(I)
130

BT=B{II)
131

FU=P*F3(1)
132

FV(II)=FV(I)

133

FW(II)=P*F4(I)
134
: EST=EST2(I)
135

EPS(II)=EPS(I)/DIV
136

J(11)=2
137
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GO TO 10
138
c DEFINE RIGHTMOST SUBINTERVAL.
139 . R
40 ANS=ANS+SUM
140
1i=1+1
141
A=B1(I)
142
B(II)=B(I)
143
BT=B(II)
144
FU=P*F5(1)
145
FV(II)=FW(I)
146
FW(II)=P*F6(1)
147
EST=EST3(I)
148
EPS(I1)=EPS(I)/DIV
149
J(11)=3
150 |
GO TO 10
151
50 ANS=ANS+SUM
152
SUM=0D0
153
EST=0D0
154
GO TO 20
155
60 MAXIT=IMAX
156
IF (NF.EQ.9)ANS=SUM
157
IF(IERRC.LE.Q)GO TO 100
158
WRITE(LP,81)IERRC
159

81 FORMAT(' QAO4A/AD ACCURACY SUSPECT AT',I6,' POINTS',

160
1' IN RANGE.  BEST ESTIMATE RETURNED.')
161 e
MAXIT=-MAXIT
162
100 SANS=ANS
163

NFS=NF
164
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NFD=NF
165
ERREST=ERREST*.01536D0
166
' ESTS=ERREST
167
RETURN
168
C REQUIRED ACCURACY NOT REACHED IN MAXIT ITERATIONS.
169
70 IERRC=IERRC+1
170
GO TO 20
171
ENTRY QAO4A(SANS,SAA,SBB,SEPS,MAXIT,F)
172
DIV=DIVS
173
LP=LPS
174
AA=SAA
175
BB=SBB
176
EPSS=SEPS
177
GO TO 90
178
END
179
BLOCK DATA
180
REAL*8 DIVD,ERREST
181
COMMON/QAO4BD/DIVD,LPD,NFD,ERREST
182
COMMON /QAQ04B/DIVS,LPS,NFS,ESTS
183
REAL*S DIVS,ESTS
184
DATA DIVD/1.4DO/,LPD/6/,DIVS/1.4/,LPS/6/
185 :

END
186
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