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ABSTRACT

Analyses of large scale pipe networks are needed whenever
significant changes in patterns or‘magnitudes of demands or
supplies occur in muhioipal water or gas distribution Systems;
Changes of this ﬁature occur whenever new industrial and reéiden—
tial areas are being developed or new éouroes of supply are tapped.
In the absence of such analytical tools to determine the perform-
ance of an existiné system under new demands, needlessly large
investments are made}for larger than necessary pipes, redundant
lines or duplicate facilities,

Another cause for concern is the ability of the numerous
algorithms to provide reliable results without which deficiént
engineering judgments may be made in engineering applications deal-
ing  with large scale pipe networks. Convergence and reliability
problems of most of the algorithms are highlighted after the
theoretical background has been presented. As an aid to more
effective formulation of the loop and nodal equations, the éssential
concepts of network theory are also presented together with the
fundamental hydraulic principles forming the backbone of the state
of the art iterative procedures.

This report concludes with a new approach which employs opti-
mization techniques to solve the pipe network problem as a viable
and perhaps more versatile alternative to the widely used iterative

methods.
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CHAPTER 1 1
INTRODUCTION

Analyssgs and design of pipe networks create a relatively
complex problem, particularly if the network consists of a range
of pipes as frequently occurs in water distribution systems of
large metropolitan areas, or natural gas pipe nefworks.’ln the
absence of significant fluid acceleration, the behavior of a network
éan be determined by a sequence of steady state conditions, which
form a small but vitai component for assessing the adequacy of a
‘network. Such an analysis 1s needed each time changing patterns of
consumption or delivery are significant or add-~on features, such
as Supplying new subdivisions, addition of booster pumps, pressure
regulating valwes, of storage tanks change the system, |
The steady state flows of a network are governed by the laws
of conservation of energy and mass and the classical pipe network
analysis problem is to éstablish the steady state flows and pressures
in a fuil flow ciosed connduit network of known physical characteris-
tics. Due to the complexity and the inherent ndnwlinearity of net=~
works, solving the netwdrk analysis problem is not a trivial
exercise, _
| For over four decades, a numbef of algorithms have been developed
since the pioneering work of Hardy Cross. All of these techniques
are iterative in nature, differing only in the method in which an
estimate of the true solution is obtained. A recent study (Collins,
Cooper, Helgason and Kennington, 1978) uncovered é new approach to
the pipe network anzlysis problem using optimization techniqués which

represent a radical departure from the traditional state of the art



methods. This report attempts to provide a comprehensive write-
up of the theory behind some of the more commonly used algorithms

and their efficiency and reliability.

1.1 PROBILEM DEFINTITION

A pipe network is physically a collection of interconnected
elements such as pipes; pumps, reéervoirs, valves, and similér
appurtenances, Matﬁematically, the network is represented as an
edge set consisting of pipés, pumps, valves and similar elements
and a node set comprising reservoirs and element intersections.
In most of the elements, 2 unique functional relationship between
pressure and flow exists. Pressure, in incompressible flow net-
works, can be expressed in terms of an equivalentvhydfaulic head,
a terminology which will be adopted throughout this repor®t as is
standard practice,

The steady state condition of a network.can be completely
defined by the head at each node and the flow in each element.
Having determined this unique set of flows/ heads for a giVeh set
of inputs and withdrawals, all othér quantities of interest_canv

be deduced therefrom.

1.2 SIGNIFICANCE

Steady state network analysis is a basic tool in water dis-
tribution system management and design. It can also be used to
develop operating policies and strategies to ﬁot'only reduce |
opérating costs but also incféase’reliability and reduce watér
wastage (Brock, 1970; Hudson, 1974; Rac et al. 1974, 1977; Shamir,

1974; Bree et al. 1975). Application of steady state network



analysis in'on;line system control is also rebeiving growing
attention (Brock, 1963; Hudson, 1973; McPherson et al, 1974,
Rao et al, 1974; Gerlt and Haddix, 1975; Eggener and Polkowski,
1976).

1.3 MOTIVATION

Since Hardy Cross first provided a solution for the pipé
network analysis problem, three genéral methbds which are widely
used today, have evolved:

(i) Hardy Cross (Hoag and Weinberg, 1957; Graves and
Branscome, 1958; Adams, 1961; Brock, 1963; Bellamy,
1965; Dillingham, 1967; Fietz, 1973; Williams, 19?3;
Chenoweth and Crawford, 1974; Eggener and Polkowski,
1976)

(ii) Newton=Raphson (Martin aﬁd Peters, 1963; Shamir and
Howard, 1968; Liu, 1969; Epp and Fowler, 1970; Zarghamee,
1971; Lam and Wolla, 1972; Lemieux, 1972; Donachie, 1973;
Rao et al, 1974,1977) |

(iii) Linearization (McIlroy, 1949; Marlow et al. 1966; Wood,

and Charles, 1972; Fietz, 1973; Collins and Johnson,
1975) .

These methods solve a set of non-linear simﬁltaneous equations
iteratively beginning with an initial trial solution. The iteration
is complete when a new solution differs from the trial solution by
less than a specified amount; otherwise, the new éolution becomes
the trial solution and the procedure is repeated, Differences in
the above methods arise because of the strategies used to determine

a new solution.



In view of the iterative nature of these methods, large scale
networks with hundreds of nodes and elements require considerable
computer efforts to solve. The choice of algorithm therefore,
depends on the computational speed and reliability of a particular
soiution procedure, | |

Matrices associated with watér distribution networks, like
most man-made systems, are sparse. One of the keys to faster conver-
gence and hence to greater computational efficiency and perhaps
reliability for most, if not all, élgorithms is the use of sparse
matrix techniques in the solution procedures (Tewarson, 1973).

In the following chapters, most of the essential tools required
for the analysis of incompressible flow in pipe networks are
preéented. Chapter 2 introduces graph theory which is useful in the
formulation of‘pipe netWork simulators and also includes fundamental
hydraulic principles governing pipe networks to provide the neces-
sary groundwork for the devélopment of the loop and node system of
equations. In Chapters 3 and 4, methods for solving these systems
of non-linear equations are described. Alternative mathematical
approaches and the writer's computational experience are presented

in Chapter 5.
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CHAPTER 2

NETWORK ANALYSIS & PIPE NETWORK HYDRAULICS

There has been growing awareness that cértain concepts and
tools 6f network thebry are very useful in fhe analyéis of pipe
networks especially in the formulation of computer simulators, The
theory of network analysis is well established and several refer-
ences in this field are available (Gulliman, 1953; Belevitch, 1968;
Karni, 1971; Clay, 1971; Shamir, 1973; Bazaraa,and Jarvis, 1977;
Minieka, 1978), For consistency, the terminology used invthis
chapter has been adopted for pipe networks,

Alsd presented in this chapter are some of the fundamental
hydraulic principles which form the foundation of the three tradi-

tional methods described in Chapter 3.

2,1 FUNDAMENTALS OF NETWORK THEORY

According to network terminology, a network is a graph consis-
ting of a set of junction points called nodes, with certain pairs
of nodes being joined by line segments callesd edges (or arcs,
branches or links). Edges joining the same two nodes are multiple
edges and a node without an edge connected to it is an isolated
node. If a node has only one edge connected to it, that edge is a
pendant. An edge and a node at the end of the edge are said fo be
incident. A subgraph is any collection of nodes and edges coﬁprising

only nodes and edges of a larger graph. The complement of a subgraph

is the collection of nodes‘and edges remaining after the removal
of the subgraph.

A path between two nodes is a subgraph whose terminal nodes -



each have only one arc incident and all othér‘nodes are incident
to exactly two arcs. A graph is said to be connected if there is
a path connecting every pair of nodes. A cdnnected subgraph in
which each node of the subgraph is incident to exactly two arcs of
the subgraph is called a lgéﬁ (or cycle),

A tree is a connected graph containing no loops. The comp-

lement of a tree is a cotree. Edges of a cotree are links. A tree

containing all nodes of a graph is a spanning tree.
An edge of a graph is said to be directed (or oriented) if
there is a sense of direction ascribed to the edge, If all edges

of a graph are directed, it is called a directed graph. However, a

network need not be directed because it may be feasible to have flow

in either direction along an edge. The flow capacity of an edge in

- a specified direction is the upper limit fo the feasible magnitude
of the rate of flow in the edge in that direction. The flow capacity
may be any nonnegative quanfity, including infinity. An edge is
directed 1f the flow capacity‘is zero in.one direction.

The topology of a directed graph of'9 nodes and € edges can |

be described by a X € node incidence matrix, A , with typical

element
| ( + 1, if edge‘j is directed away from node i )
aij = % -~ 1, ‘if edge j is directed towards node 1 %
( 0, if edge j is not connected to node 1 )

For a connected graph it is apparentAeach column of A will contain
a 1 and a -1 and all remaining elements will be gzero. As a check,
additior. of the rows of A should yield a zero row. Thus, the rank,

r, of & is at most 7 - 1.



If loops are formed, one by one, by adding links, one at a
time, to a given spanning iree, it is apparent that each time a
- 1link is added é'unique loop will be created. Such a loop is called

a fuhdamental loop. A fundamental loop set for any connected graph,

containing A loops, can be described by a A X €& fundamental loop

matrix, B, with typical element |

+1, if edge j is in loop i and the direction of edge j
is clockwise, say

iy = -1, if edge j is in lqop i and the direction of edge j

is counterclockwise

NN AN AN NN AN N N
e e e e N S

0, if edge j is not in loop i
By performing elementary fow_operations on B, an identity sub-matrix
of order, A , can be obtained, implying the rank of B is A .

Both the node incidence matrix and the fundamental loob matrix
can‘be used te formulate the continuity and energy (or loop) sets

of equations in & computer simulator,

2,2 PIPE NETWORK CONSERVATION LAWS

Pipe network parameters are introduced to develop two conser-
vation laws utilizing graph theory. The following notation shall
be adopted for Conveniehce. A directed network will be described by
a node set, N and an edge set, E of ordefed pairs of nodes. Eéch node
n € N is associated with a uniqué number called the head, Hj,. For
an edge direéted from node i‘to node j, an edge head loss is defined
as [&Hij e Hi =~ Hj in which ZXHij - MZXHji.
exists, positive when the edge is directed from node i to node j.

In each edge, a flow Qij



A Dbasic law to be satisfied by the flows in a network is mass
conservation,

(é?%)& Ean - (E?%)E EQin = r, all neN (2.1)

where r is the requirement at node n, posifive for inflbws (supply)
and negative for outflows‘(demand). Denoting the vector of Qij's

by g, equation (2.1) can be rewritten as

| | AG = F | (2.2)

where T = (rl, Toy eonny r.).

As noted in section 2.1, A has a rank of m» =~ 1, implying one
of the rows in A is redundant and can be.arbitrarily omitted. The
matrix A,, obtained by deleting one row of A, say row 7, is
defined as the reduced node incidence métrix. A corresponding element
in ¢ is also deleted and a demand vector, 5, defined as ~ @ = (rl,
rz,.;.,.,QOQI) is introduced., Then |

Ap g % - @ (2.3)

It should be noted, in passing, that ali the rows in A will
be independent, that is, rank éf A=T if pumps and reservoirs are
present in the network. However, a redundant row still exists if a
junction is assumed at the reservoir or pumps.

If the nodal head is unique, as assumed, then the summation
- of head losses around a loop is zero. This obvious:proposition is
used as the baéis for the second fundamental network law. Thus, if
L, is the edge set forvedges in fundamental loop k, k = 1, 2, ...,
A, then

Z AHij -0 all k ‘ (2.01)
(1’J)£Lk '



Equafion (2.4) can be written as
BAh=0 (2.5)
ifAh is defined as the vector of [kHij's. |
If a mesh flow vector P = (p1y D2y Pyseeses R, ) is defined,
the Tollowing felationship can be written
=373 (2.6)
Thus if to each fundamental loop a unique'mésh flow is associated,
the flow in any edge is a linear combination of the mesh flows for
»fundamental loops containing the edge in question.
If pumps aﬁd reservoirs are includéd in the pipe network,
equation (2.5) is generalized as follows:

AE = BAh - }"11‘3 (2.7)
where Ep = pump head vector, AE = vector representing the diff=-
erence in total grade between two reservoirs.

In this geﬁeralized case, a junction node is assumed at a
reservoir or pump and a pseudo loop is assumed to connect 2 reser-

voirs,

Z.B‘FRICTION & MINOR‘LOSSES

The relation bétween head and discharge, that is, Ah and g
completes the number of equation sets required to define the net-
work problemo.Total head loss in a pipe, H, is the sum of the line
loss, hrp, and minor loss, hyy. The line loss expressed  in terms
of the discharge is given by: |

th = Kan : (2,8)
where Kp is a pipe constant which is a function of line length,

diameter and roughness and n is an exponent. Commonly used head
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loss equations include the Darcy~Weisbéch, Hazeanilliams and

Manning equations. Perhaps the most widely used of these equations

is the Hazen~Williams equation, which is,

English System (ES) Q 5[1.318 Cow ARO'63 SO°5LL

l6 .q
S.T. Units Q = 0.849 Cyy RO 5005

N e e N N’ .

(2.9)

in which CHW is the Hazen~Williams_roughness coefficient, S is the

slope of the energy line and equals-hLP/L, R is the hydraulic

radius defined as the cross-~sectional area, A, divided by the wetted

perimeter, P, and for full pipes equals D/4 (where D = diameter of

pipe). Table 2.1 gives values for Cy, for some common materials used

for pressure conduits (Jeppson, 1977).

Type of Pipe : Cow
PVC pipe | 150
Very smooth pipe - 140
New cast 1ron or welded steel 130
Wood, concrete _ 120
Clay, new riveted steel 110
01d cast iron, brick 100
Badly corroded cast irbn or steel 80

Table 2.1 : Values of Hazen-Williams Coefficient

Equations (2.9) can be written in terms of hLP if @ is known.,

Thus ,

1.852 Du.87

¢ Hw

with D in inches and L in feet.
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Principles governing the flow of fluid as well as much exper-
imeéntal evidenﬁe indicates that the head loss due to added turbu-
lence or secondary flow in the ﬁresence of fittings, valves, meters
and other components'in a netﬁork, will be approximately proportional
to the square of the velocity or the flow rate squared. Minor losses

are commonly expressed in the form
, A2 v
hoy = Ky Q (2,10)

in which Ky = M/(ZgAZ).

Nominal values of M for wvarious common appurtenances‘are given in
Table 2.2.(Jeppson,‘1977). It is apparent from these loss coeffi-
cients that minor losses can be neglected if relatively long pipe-
lines are analyzed. However, in short pipelines, they'may repfesent
the majbr losses in the system, or if a valve-ié partiy closed,

its presence has profound influence on the flow rate.

2.4 PUMPS

A number of alternative methods might be used to quantify the
head, hpg produced by a pump. In some cases a constant power
input is specified. In general, the relationship between pump

head, h.. and discharge, Q, can be expressed as

p

h, = P(Q) - (2.11)

p

For a constant power pump,

P(Q) = 2/Q | (2.12)



DEVICE M
Globe Valve (fully open) 10
Angle Valve (fully open) 5
Gate Valve (fully open) 0.19
Gate Valve (3/4 open) 1.0
Gate Valve (1/2 open) 5.6
Ball Check Valve (fully open) 70
Foot Valve (fully open) 15
Swing Check Valve (fully open) 2.3
Close Return Bend 2.2
Tee, Through Side Outlet 1.8
Standard Short Radius Elbow 0.9
Medium Sweep E1bow . 0.8
Long Sweep Elbow 0.6
15° Elbow 0.4

12

Table 2.2 : Loss Coefficients for Valves and Other

Pipe Fittings
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where the pump constant, Z = 550 HP/62.4 and HP = useful pump
horsepbwer.

Other fﬁnctions have been suggested, and a common choice is

a second order polynomial of the form

P(Q) = 47 + BQ + H_ | (2.13)

in which A, B and H  are constants for a given pump and might
be determined by fitting Equation (2.13) to three points taken

from a pump characteristic curve.

2.5 PRESSURE REGULATING VALVES

A pressure regulating valve (abbreviated PRV) is desigﬁed to
maintain* a constant. pressure downstreém from it regardless of
how large the upstream pressure is. Therefore, it is apparent
that the unique relationship that exists between head and discharge
for line losses, minor losses and pumps, does not exist for a PRV,
Solution of pipe networks which include control elements with non-
unique head dischargé relationships using optimization techniques
is still an active research area (Collins, Cooper, Helgason,
_Kennington, 1978).

Exceptions to the above occurrence ares (1) If thé upstream
pressure becomes less than the valve setting, and (2)‘if the down-
stream préésure‘exceeds the pressure setting of the valve sé that
if the PRV were not present, the flow would be in the opposite
direction to the downstream flow direction of the'vélve. If the
first condition éccurs, the valve has no effect on flow conditions.
The PRV acts as a check valve, preventing reverse flow if the

second condition occurs. By preventing reverse flow, the PRV
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allows the pressure immediately downstream from the valve to
exceed its pressure setting. Thus, PRV's can perform both functions
of reducing pressures in portions of a pipe distribution system
if the pressures would otherwise be excessive, and may also be
used to control from which sources of supply the flow comes under
various demand levels. In the latter application, the PRV acts as
a check valve until the pressure is reduced to critical levels by
large demands at which time additional sources of supply are drawn
upon. The analysis of a pipe network containing PRV's must be

capable of determining which of these conditions exist.

2.6 NODE ANATLYSIS

To obtain the system of equations which contains the heads ét
the junctions/nodes of the network as unknowns, they - 1lindependn
ent continuity equations are written as in Equation (2.3). The
relationship between discharge and head loss is then substituted
into the cohtinuity equations yielding a set of nH - 1 equations
in n - 1 unknown nodal heads.

Solving for Q from the exponential formula (Eqaymgn 2.8),

using double subscript notation, gives

. 1 '
Qij = (AHij/Kij) /n (2.14)
in which AHj = (hpplij + (howdys

13

Substituting Equation (2.14) into the junction continuity equations
gives

[ (Hy - )
_Z<l I
( Kis )

J



2.7 10OOP_ANALYSTS

If the discharge in each pipe is initially considered unknown
instead of the head at each junction, the number of simultaneous
eduations to be solved is increased from (7) - 1) fo ()~ 1 +2A)
equations., However, this increase ih the number of equations is
kSOmewhat compensated by a reduction in the number of non-linear
equations in the éyétem.

The analysis of flow in networks of pipes is based on the
energy and mass conservation laws discussed in section 2.2, Math-
ematically, the oontinuity equations are concisely expressed as:

Ap § = ~
where Ap is the reduced node incidence matrix. It is apparent
that each of these continuity equations is linear.

The femaining set of equations is formed by applying the
energy conservation priﬁciple and expressed in terms of’the.fundan
mental loop matrix, B, as follows} |

BAh = 0
which has A independent non-linear equations.

Having solved the systém of equatioﬁs for the;dischargeyin
each pipe, the head losses in each pipe can be defermined, From a
known head or pressure at one junction, the heads and pressures at
each junction throughout the network, or at any point along a pipe,
can be'determined by subtradting the head loss from the head at
the upstream junction, and accounting for differences in elevations
if this be the case. |

In some problems the external flows may not be known., ﬁather

the supply of water may be from reservoirs and/or pumps. The amount
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of flow from these individual sources will not only depend on
demands, but also will depend upon the head losses throughout

the system.

2.8 CORRECTIVE MESH FLOW ANALYSIS

This method of analysis yields the least number of equations.
However, like the node analysis method, all the equations are non-
linear. Thesevequations consider a corrective mesh flow as tﬁe
unknowns and as discussed in section 2.2, the system of equations
to solve 1s written as: |

q=B B

in which P is the mesh flow vector. Since there are A fundamental
loops in a.network, the corrective mesh flow system of equations
consists of R.equations;

This method requires an initialization éf the flow in each
pipe which satisfies all junction continuity equations. Since
these initial flow estimates génerally will not simultaneously
satisfy the A head loss equations, they must be corrected before
they equal the true flow rates in the pipes. A flow rate adjustment
can be added with due regard for sign, to the initially assumed flow
in each pipe forming a loop of the network without violating
continuity at the junctions. This fact suggests establishing A
energy equations around thell.lbops of the network in which the
initial flow plus the corrective mesh flow rate is used as the true
flow rate in the energy eguations. Upon satisfying these energy

equatiéns by finding the appropriate corrective mesh flow rates,



17
the'7-]_continuity eqqations would remain satisfied as they
initially were., The corrective mesh flow rates may be arbitra-
rily taken positive in the clockwise or counter~c10¢kWise
direction, but the sign convention must be consistent éround

any particular loop.

4

3. 5.
w Kl
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CHAPTER 3

NEWTON~-RAPHSON METHOD

- The Newton-Raphson method is an iterative scheme which starts
with an estimate to the solution and repeatedly computes better.
estimates. Unlike other methods which converge linéarly, it has
fquadratic convergence", Generally if guadratic convergence occurs,
fewer iterations are needed to obtain the solution with a given
precigion than if linear convergence occurs. In addition to rapid
convergence, the Newton-Raphson method is eésily incorporated into
a computer algorithm.

Any of the three sets of equations defining the pipé network
problem, that is equations considering (1) thé flow rate in each
pipe unknown, (2) the head at each junction unknown and (3) the
corrective mesh flow rate around each loop unknown, may be solved
by this method. &n initial‘guess is required for the Newton-~Raphson
method. It is the besf method to use for larger systems of equations
because it requires less computer storage for a given number of

equatiors.

3,1 APPLICATION TO NODE EQUATIONS
The iterative Newtoh~Raphson formula for a system of equations

o i(m*l) = 5(m) | p-1 ?(X(m)) : (3.1)

in whichvthe superscripts within parentheses are not exponents but
denote number of iterations, The unknown vectors X and F replace
the single variable x and function F and the inverse of the Jacob-
ian, p~1 replaces 1/%% in the formula for solving a single equation,

Adapting Equation (3.1) to solving the set of equations with
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the heads as unknowns, Equation (3.1) becomes

~(m¥l)  _(m) 3 (m)
H = H ~ D "F(H

) \ (3.2)
Making up the Jacobian matrix D, are individual rows consist-

ing of derivatives of that particular function with respect to the

variables making up the column headings. For the system of head

equations, the Jacobian is,

= ]

aFl 8F] 9F1
AaHl , aHZ © 06000600 e 5?3
QPQ 3F2 8F2
I) = 8}.{1 4 9{{2 ® v 6 ¥ e v e e az{J
dFy aF; oF
aHl ) GHZ RN aHJ

where J = number of junction nodes.
The Jacobian is a symmetric matrix and an algorithm for solving a

linear system of equations with a symmetric matrix may be preferred

for greater computational efficiency.

3.2 APPLICATION TO CORRECTIVE MESH FLOW EQUATIONS

The Newton-Raphson method when applied to this set of

equations becomes

plmd) = pm) _ p=d pp(mly (3.3)

in which the Jacebian is

on o 21y
9P1 4 BPZ e 069300 /aPL
, dF,  9F o
D - 9Py ¢+ 9Py ...... IP7
Q%L G%L : Q?L
i 55; ’ 55;'-.-... 5?5 |
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where L = nﬁmfer of loops and P = cofrective mesh flow for each
loop. The Newton-Raphson method suffers from a setback of requir-
ing a reasonably accurate initializationy otherwise it may not
converge,

When PRV's are present in a pipe network, the procedure of
using idenfical loops for the corrective flow rates and energy
‘equations must be‘altered. The reasons are (1) the head drop across
a PRV cannot be expressed as a functioﬁ of the P's circulating
through thatvpipe, (2) continuity at some junctions will not be
satisTied if the P's are assumed to circulate through pseudo 1oops
from artificial reservoirs created by the PRV's to another resefm
voir in the network. The reason is that P in a pseﬁdo loop would
extract*fluidAfrom a juncfion, but not add an equal flo% through
another pipe Jjoining at that junction.

Consequently, some of the loops around which thé energy equa-
tions are written cannot correspond to the loops around which the
corrective flow rates, P, circulafe» The individual P's will thus
be assumed to circulate . around the real loops satiéfyinglcontinuity
at all junctions. The energy eéuations will be written‘éround loops
containing pipes or other elements such as pumps or reservoirs'

whose head losses are functions of the discharge through them.

6 S 3 ¥



CHAPTER 4

LINEAR METHODS

Non=linearity of the function relating head and discharge is
the crux of the problem in solving a pipe network., Recall that
in the loop analysis, there are 7 4 A~ 1 equations of thch A
number of equations describing energy conservation around loops,
are non=linear., The other two analyses, namely the node analysié
and corrective mesh flow rate analysis, each of which having A
energy gquatiéns written around each‘loop of the network; both
involved non-linear equétions in each of its entire system of
equations, Chapter 3 has dealt with the straight-forward applica-
tion of the Newton-Raphson Method to linearizing the non-linear
equations associated with the latter two methods., This chapter
wili be devoted to cher linearization techniques, some of which

are variations of the Newton-Raphson Method.

4,1 GRADIENT METHOD

The gradient‘méthod, which is giVen extensive coverage by .

‘Wood (Wood, 1981), is derived from the first two terms of the
Taylor series expansion. Any function, f(x);~which is continuous,
that is, differentiable, can be approximated as follows:

f(x) = f(x,) + f'(xo)(x~xo) T (4.1)
It is apparent from the right hand side of Equation (4;1) that
the approximation has reduced f(x) to a linear form. However, if
f is a function of more than bne variable, Equation (4.1) can be

generalized as follows:

21
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it

PO(1),%(2)0n0) = £x(1)0,x(2) 0 een) 4 Foms (x(1) - x(1),)

oLs (x(2) - x(2)) + ...,

¥ ox(2)

C(4,2)

in which the partial derivatives are evaluated at some x(1) =

x(l)o, x(2) = x(2),, etc.

Bo1.1 ALGORITHMS FOR THE SOLUTION OF LOOP EQUATIONS
To conform to the netation wused in this chapter, Equation
(2.3) which neatly describes the mass conservation (continuity)
equation for each of the j¥* nodes in the network, is rewritten
aé follows:
Tyt -~ Sai, = Q. (j equations)  (4.3)
in which Q. denotes the external inflow or demand at the junction
node, positive for infloWs. |
The energy conservation equatibn in Equation (2.5) for fund-
amental loops without pumps, is now rewritten to include pumps as
follows: |
2. hy = E:hp (L equations) o (bb)
where hy = energy loss in eéch pipe, including minor losses; hp =
energy input by pumps; L = number of fundamehtal loops.
For any two fixed grade (or reservoir) nodes, the energy
conservation equation written around this pseudo loop is written as:
NE = EZhL - E:hp (f=1 equations) | (4.5)
in whichAE = difference in total grade between two fixed grade
nodes; f = number of pseudo loops.
If p equalé the number of pipes in the network, then the mass
and energy equations form a set of p simultaneous equations of which
L+ f~1) equations constituting the set of energy equations are.

non-linear,
*for networks with reservoirs
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Using Equations (2.8), (2.,10), (2.11) and (4.5), the energy

equations expressed in terms of the discharge, Q, are

AE = 2 (k0" 4 KQ°) - P(Q) | (4.6)
It can be seen that Equation (4.4) is a special case of
Equation (4.6) where AE is zero for a fundamentai loop.
Three‘algorithms are presently in significant use and gradient
mefhod is émployed to handle . the non-linear terms in Equation (4.6),

For a single pipe section, Equation (4.6) can be written as

£(Q) = KpQ" & KyQ° - P(Q) (4.7)
which represents the grade difference across a pipe séction carry-
ing flow Q. Substituting an estimate, Qj, for- Q, and denoting £(Q;)
by Hi, Equation (4.7) becomes
Hy = £(0;) = Kp@ + K, Q7 - P(Q,) (4.8)
1 1 b1 M i i A .
Differentiating Equation (4.7) and setting Q = Q;, gives the

gradient of the function at Q = Q.

Thus,
£1(0;) = nkpQ] T 4 2 ‘(Q
(Q) = nKpQy 4 2KQ; - Pr(Q)
Denoting f£'(Q3) by G, thus
1 1

Gl = nKPQ'- + ZKin - P'(Q') : ’ ([4'.9)

Both the function and its gradient, evaluated at Q = Q;, will be
used in all three algorithms for solving loop equations.,

h.l,iwl Single Path adjustment (P) Method

This method was first described by Hardy Cross as the "Balanc-
ing Head Method" which was limited to closed loop systems and
included only line losses.: The procedure 1s generalized and summar-

ized as follows:



(i) An initial set of flowrates which satisfies continuity
at each junction node is determined,
(ii) A flow'adjustment-factor is computed for each‘path'

| (I4f-1) to satisfy the energy equation for that path
and continuity must be maintained when applying the
correction factor.

(1ii) Step (ii) is repeatéd using improved solutibns.until
the average correction factor is within a specified
limit,.

Equation (4.6) is used to compute the adjustment factor for a
path using gradient method to linearize the nonalinear energy

equations. Thus,

£(Q) = £(Q;) + £'(Qy) HQ (4.,10)
in which AQ = Q - Q3, where Q; is the estimated discharge.
Applying Equation (4.10) to Equation (4.6) and solving for AQ
gives _

AE - YIH; |
ANQ = (b.11)
2161

- which is the flow adjustment factor to be applied to each pipe in

the path. The numerator represents the imbalanée in the energy
relationship due to incorrect flow-rates and this procedure reduces
this to a negligible quantity. Flow adjustment is carried out for
all { fundamental (closed) loops and (f-1) pseudo loops in the
network. |

4.1.1.2 Simultaneous Path Adjustment (SP) Method

This algbrithm is similar to the corrective mesh flow meithod



described in Section 2.8, thé only difference is that gradient
method is used here instead to 1inearize_the eﬁergy equations, It
is developed to improve convergence by simultaneously adjusting the
flowrate in each loop representing an energy equation. The method
is summarized és follows: |
(1) An initial set of flowrates which satisfy continuity at
each junction node is determined.

(11) A flow adjustment factor is simultaneously computed for
each loop fo satisfy the energy equations without
disturbing the continuity balance,

(iii) Step (ii) is repeated using improved solutions until
the flow adjustment factor is within a specified limit.
The simultaneous solution of € + f - 1 équations is required
to determine the loop flow adjustment factors. Each equation in-
cludes tﬁe contribution for a particular loop as well as contri-
butions frém all other loops which have pipes common to both'loops.
For loop j, the head change required to balance the energy
equation is expressed in terms of the flow change in loop j ( ZSQj)

and the flow changes in adjacent loops (A Q) as follows:

Q) = T(Q;) + S5 Ay + S Aqg,
or, f(Q) = £(Q;) + £'(Q;) Hay + £1(Q) Ag,  (L.12)

Substituting £(Q)

it

AEv f(Ql) o Z:Hiv fr(Q.) = ZG-, Equation
i i
(4,12) becomes
AR -2, = (e A+ 26 AG)  (5.13)
: ‘ 1 J 1 {
in which .EZHi = sum of the head changes for all pipes in loop j

- ( Z:Gi) Z&Qj - sum of all gradients for the same pipes times flow
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change for loop J. E:(Gi AQy) = sum of gradients for pipes common
to loops j and k multiply by the flow change for loop k.

A set of simultaneous linear equationS isﬂ formed in terms of
flow adjusfment factors for each loop representing an energy equa-
tion; The solution of fhese linear eQuations provides an improved |
solution for another trial until a specified convergence criferion
is met,

L,1.1.3 Wood's Lineér (L) Method

This method developed by Wood (Wood, 1981) involves the solu-
tion of @11 the basic hydraulic equations for the pipe network.
However, only the energy equations need to be linearized as the
contiﬁuity equations ére ail linear. Using gradient approximation,
the energy equations are 1inearized,in.terms of an approximate
Tlowrate, Qi as.follows:

£(Q) = £(Q3) + £'(Q;)(Q-Q;)
Introducing H; and Gi as before, the above equation becomes
(216G5)Q = 23(G4Q; = Hy) + AE (4. 14)

This relationship is employed to formulate (! + f - 1) energy
equations which together with the j continuity equations,vform-a
set of p simultaneous linear equations in terms of the flowrate in'
each pipe. One significant advantage of this scheme is that an
arbitrary sef of initial flowrates, which need not satisfy continuity,
can start the iteration. A flowrate based on a mean flow velocity
of 4 ft/sec has been used by Wood (Wood, 1981). The solution is
then used to linearized the equations and successive trials are
carried out until the change in flowrates between sﬁCcessive trials

- become insignificant.
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4,1,2 ALGCRITHMS FOR SOLVING NODE EQUATIONS
Two methods for solving the node equations are also widely
used and are described here for completeness.

L,1.2.1 Single Node Adjustment (N) WMethod

This method was also first describhed in the paper by-Hardy‘
Cross and is known as the “Baiahcing Flows Method"., The procedure
is outlined as follows:

(1) A reasonable grade is assumed for each juﬁction node
in the system. The better the initial assuﬁptions, the
fewer the required trials.

(ii) A grade adjustment féctor'for each junction node which
tends to satisfy continuity is'computed.

(iii) Step (ii) is reﬁeated using improved.solufions until

a specified convergence Critefion is met.

The grade adjuStment factor is the change in grade at a
particular node (AH) which will result in satisfying continuity
and considering the grade at adjacent»nodes as fixed. For conven-
ience, the required grade correction is expressed in terms of Q3
which is the flowrate based on the values of the grades at adjacent

nodes before adjustment.bThuS, using gradient approximation,

£(Q)

with the usual substitution,

hid

r(Q) + £1(Q;).AQ

AqQ = Y(1/6;) AH (h.15)
where AH = H - Hj, the grade adjustment factor and AQ denotes
the flow corrections required to satisfy continuity at nodes.

From Equation (4.,3),
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AQ = 205 - Qg C(4.16)
Thus, from Equations (4.15) and (4.16),

ZSP{= 29 - G (4.17)

| 21 (1/G3) |

In Equation (4.17), :inflow is assumed positive, The numerator re-
presents the unbalanced flowrate at the junction node,
Q., the flowrate in a pipe section prior to adjustment, is

computed from - 1/n

in which AH; = grade change based on initial assumed values of
grade.,
If pumps are included, the following expression is used to

determine Q. : n : o '
+ AHy = KQ3 - P(Q;) (4.18)

Equation (4#.18) is solved using an approximation procedure, Adjust-
ment of the grade for eacnh junction node is made after each trial
until a specified convergence criterion is satisfied,

4.1,2.2 Simultaneous Node Adjustment (SN) Method

This method requires the linearization of the basic pipe net-
work node‘equations in terms of approximate values of the grade. If
the discharge in Equation (4.3) is expressed in terms of the assumed

heads, it can be written as:

L W/ S
H. - H _ L
,Z[““‘"‘”axab : ] =fe (4.19)

for any node, 2, 2nd b denotes an adjaceht node.

Bquation (4.19) can be linearized with respect to grades if,the
flowrates ave Written in terms of some initial values of the grades,
Hyi and Hypi, and the corrections in these grades. The gradienf method

is again used to calculate the flowrate in pipe section, ab. Thus,
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Q= Q; + 29 An, + 28 Awm

5T, a 5H, b (4.20)

in which Q = ( (Hg - Hb)/Kab)l/n (4,21)
AH, = H = Hyy ( adjustment factor for head at node =)
AHy = Hb - Hys ( adjustment factor for nhead at node b)

Substituting the partial derivatives of the flowrate expression
in Equation (4.21) in Equation (4.20) and simplifying, gives

t ' |
Q= Q;(1 - 1/n) + L (Hy - ) (h.22)

, nKab
The initial value of the flowrate, Qi' is computed based on the

initial values of the grades. Thus,

/n

Q7 (s - Hyp)/Kep)
where K, may include minor losses, if any,
Using Equation (4.22), ‘the continuity equation for each junction
node can be expressed as a 1inear function of the variable and fixed
grades-of ad jacent nodes and fhe variable grade of junciion, a,

Hence,

- 1l=n I
N . . N 1-n
b=1 nKap b=l K
N Ny ' N 1-n
: . F Q.
Qe + 21 Qi+ N (*El) - H > i
. b=1 b=] n b=1 nK b
‘ a

where N refers to all adjacent nodes, N, refers to‘adjaceht variable
grade nodes and Np refers to all adjacent fixed grade nodes. Q; is
 positive for outflow.

Equation (4.23) is written for each junction node in the
system resulting in a‘set of linear equations in terms of junction

node grades, If pumps are included, two additional nodes may be
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assigned to a pump at the suction and discharge sides as shown

schematically belows
i

e
a v ﬁag;;Q'g

Two additional equations can be written:

Q;“

K
ab (H - H

H - Hb = ch C d)

a

(4, 2h)

1/n ] (4.25)

Equation (4.,24) is just the continuify equation and Equation (4.25)
relates the head change across the pump to the flow in either the
discharge or suction line. Equétion (4.25) can be linearized using
gradienf method as folléws: | |

Let ¥ = P(Q;) 4 Hy -H, = 0 . (4.25a)
Using the gradient approximation,

2Y 2Y Y |
Y = Y. 4 9}{5 AHb '4‘ BHC AHC+9Hd AHd (L".Zé)

i
Substituting the partial derivatives in Equation (4.26) and simpli~
fying, we have the following linearized equation: |

Ho(1 + B) - Hy = Hyp = (4.27)
where & and g depend on the relationship used to describé the pump,
- P(R), and are given by

X

P

A set of (J + ZNP) simultaneous linear equations (where Np =

number of pumps) is generated and solved sfarting'with Qi's based

té

P(Q;) - 2L pr(q,)
- P'(Qi)/(HKCdQ?ul)

i

on any assumed set of junction node grades. An improved set of
junction node grades is then used to compute an improved set of
Q; *s and the procedure repeatéd until a specified convergence

criterion is satisfied.
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L,2 COMMENTS ON AIGORITHMS USING GRADIENT METHOD

Node equations are easier to formulate because the equétions
include only cohtributions_from ad jacent nodes. On the other hand,
the loop equations require the identification of an appropriate
set of energy equations which include terms for all pipes in funda-
mental loops and between fixed grade nodes. Computer formulation
of this set of equations is considerably more difficult than form-'
ulation of the node equations...

Each of the procedures described is iterative in nature and
computations terminate when a specified convergence criterion is
met. The solutions are therefore only approximate although they
can be very accurate, The ability of an algorithm to produce an
acceptable solution is of prime COncerﬁ and studies have demons-
trated that convergence problems exist and an accurate solution is
not always possible. |
4.2.1 ACCURACY OF SOLUTIONS

A solution is considered accurate only when all the basic
equations are satisfied to a high degree of accuracy. For the
three methodsbased on loop equations, the continuity equations are
exactly satisfied. Each of these»ﬁethods then proceeds to>sétisfy
the energy equations iteratively and the unbalanced heads fof the
energy equations is evidence of solution accufacy. For méthdds
based on‘node équations, iterations are carried out to satisfy con-
tinuity at junction nodes and the gnbalance in oontinuityvis a
significant indication of solution accuracy.
L4,2,2, RELIABILITY OF ALGORITHMS

A study carried out by Wood, using an extensive data base,
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has shown that the P, N and SN methods exhibited significant'
convergence problems (Wood, 1981). Since these methods are widely
‘used, great care must be exercised when using them.

SN method failures are characterized by the inability to meet
a reasonable convergence criterion and if this occurs in a limited
number of trials, further trialé are usuallyiof no benefit. Failure
rate was quite high and the use of results obtained émploying this
- method is not recommended unless @ good accuracy is obtained in a
reasonable number of trials;

It has been established that algorithms based on node equations
-(N and SN methods) failed to provide reliable results because of
the inability of these methods tq handle lbw resistance lines. This
is attributable to the fact'that solution algorithms for these
equations do not incorporate an exact continuity balance.

For each of the three methods singled out above, failure rates
can be reduced if initial values closer to the correct values can
be determined. However, this is no easy task and as evidenced in
the study, even an excellent set of initial conditions does not
guarantee convergence.

Both the SP'and L methods provide excellent convergence‘and
the attainment'of a feasonable convergence criterion is sufficient
to assure gfeat_accuracy, Convergence failure is very rare, However,
since a gradient method is used to handle non-linear terms, there is
always the possgibility of convergence problems. Ill-conditioned
data such as poor pump déscriptidns are_particularly prone,

The L methqd haé some advantages'over the SP method. Assumed
arbitrary flowrates need not satisfy continuity as the continuity

conditions are already incorporated into the basic set of equations,



This method alsgo allows a more straight-forward and reliable inclu-
sion of hydraulic components such as check valves, closed lines,
and pressure regulating vélves, Although the SP method has signi-
ficantly less equations to solve, the use of sparse matrix techni-
gques to handle the larger matrix generated by the L method has

somewhat negated this advantage.

4,3 LINEAR THEORY METHOD BY WOOD AND CHARLES

Invthié section, the linear theory method (Wood and Charles,
1972) will be described and used in solving the system of equatibns
formulated by loop analysis which censiders flowrates as unknowns
{(hereafter referred to as the Q-equations). Like the other linear
me thod described in Section 4.1.1.3, it has several distinct
advantages over the NewtOnmRaﬁhson or Hardy Cross methods, Firstly,
it does not require an initialization, and secondly, accordihg to
Wood and Charles, it always converges in a rélatively few itera-
tions,. However,rits use in solving the head oriented equations or
the corrective loop oriented equations is‘not recommended. |

Linear theory transforms the % non-linear loop equations into
1iﬁear equations by approximating the head in each pipe by

. n=1 — :
hp = (ke; ) @ = x'Q (L,28)

9

A

in which Q3 is an estimate of the flowrate, and K' = KQi .
Combining these linearized loop equations with %he~j41,juhction
continuify equétions provides'a system of p linear équations which
can be solved by Gaussian elimination in conjunction with éﬁarse
matrix techniques (Tewarson, 1973).

‘In applying the linear theory method it is not necessary to

supply an initial estimate, as maybe implied. Instead, for the

33



first iteration each K' is set equal to K, which is equivalent +to
setting all flowrates Qi"eqﬁal to unity. In developing the linear
theory method, Wood observed that successive iterative solutions
tend to oscillate about the final solution. Reasons for the oscil=-
lation can be understood by observing that the linear theory method
is a variation of the Newton-Raphson method described in Chapter 3
whereby K' in Equation (4.28) is simply the derivative of hL if
multiplied by n. The oscillation eould be pfevented by multiplying
each K by its n, which involves more compufation than averaging.
consecutive solutions as proposed by Wood. Thus, the'flowrate used
in a trial is just the average flowfate for thaf pipe from the
pfevious two solutions, or |
Ql(m)_= [ Qi(mél) +’Qi(m-2) ] /2

in which m within parentheses denotes a trial number,
4,3,1 INCLUSION OF PUMPS AND RESERVOIRS

Wheh pumps (not booster pumps) and resérvoirs are connected
to a network, the flows in the two connectéd: pipes become éddi-
tional ﬁnknowns and therefore an additional equation is required
beyond the j continuity equations and , fundaméntal loop equations.
The additional equation is obtained from a pseudo loop, which
connects the two reservoirs (fixed grade nodes) by a "o flow"
pipe. If f fixed grade nodes exist in a netwofk; there would be
f-1 independent equations. Energy conservation around a pseudo
loop (of which a fundamental 1dop is a special case) is defined
by Equation (4.6). Thus, o

AE = TR + K Q%) - P(Q)

34
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If the expression fofFP(Q) in Equation (2.13) is»édopted in
~ Equation (4.6), the linear theory methbd does not giVe rapid conver-
gence as it does when pumps and/or reservoirs are not present, A
modification will therefore have to be made to éliow the linear
theory method to converge fapidly. The reason for the modification
is that the head produced by a typical centrifugal pump decreasésb
nearly propqrtional to the reoiprocal of the s%;re root of the
Tlowrate whereas the head loss in a typical pipe increases approxi=-
mately proportional to the squafe of the flowrate, A éonsequence of
using this typical pump relationship in Equation (4.6)is that if the
equation is solved by the linear theory method, convergence may
become very slow if at all.

Thié situation can be improved by a transformation of variables
so that'the,new unknown has an exponent close to n. Such a trans=
formation is ‘ |

G = Q + B/2A (4.29)
in whicﬁ"G is the new variable and A and B are the same constants
in Equation (2.13). The appropriateness of Eduation (4.29) is demon=-
strated by solving it for Q and substituting in Equation (2.13).
After some simplification,

h. = AG® 4+ h | (4.30)

P (o)

where h = H - B2/LA
0 (o}

Obviously, the exponent of G (that is, 2) is close to the fypical

n., Substituting Eqﬁation (4,30) in Equation (4.,6) gives

et

n 2 2 ) |
| (K Q" + K,Q7) - 2AG% = AE 4 Xin,  (4.31)
Addition of Equations (4.29) and (4.31) produces a system with as

many equations as unknowns,
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4,3.2 INCLUSION OF PRESSURE REGULATING VALVES (PRV'S)

Networks containing PRV's may be analyzed by the linear theory
methodbby initially assuming that the pressure (or head) immediately
downstream from a PRV is constant and equal to the valve setting.
Junction continuity equations are then written as if no PRV's |
are present. To write the loop equations, pipes containing PRV's
are disconnected from the upstream nodes and the PRV's are replaced
by dummy reservoirs, After each iteration a check bn the flowrate
Q, in each pipe containing a PRV is made. If there is any negative
Q, the pseudo loop equation which includes terms for that pipe is
modified with Q replaced by an unknown grade (head) immediately

downstream from that PRV,



CHAPTER 5
ATTERNATIVE MATHEMATICAL APPROACHES

& COMPUTATIONAL EXPERIENCE

5.1 MATHEMATICAL PROGRAMMING TECHNIQUES

As a prelude to introducing the aiternative approaches to -
solving the governing equations for a pipe network using optimi-
zation techniques, it is convenient to define a network topology
using notetions which are consistent with those used in graph
theory. Let the network topology be described by a node set N and
an arc get (network element) EO. In each of the set EO, let Qij
denote the flowrate from node i to j. Each node, n in the set N
js associated with a2 hydraulic head, H . Let R, 2 subset of N, be
the set of nodes corresponding to reservoirs (fixed grade nodes)
and let HE for all n&R be the fixed head associated with 2 res-

ervoir, Also let r, for all neN denote the flow requirements

L

(that is, supply or demand) at node n. For an incompressible fluid,

the governing network equations can be stated as:

2. Qni = VAN Qip = r, » all nel (5.1)

(n,i)er 7 (i,n) &E
ZN r = 0 (5.2)
ne
Hy = Hj = Fij(Qij),‘ all (i,j)aEO
(5.3)
Hy, = H;l , a1l n&R (5.0)

Equation (5.1) is Just a statement of mass conservation at each node
while Equation (5.2) stipulates mass conservation for the network

as a whole, Eguation (5.3) states that the head loss H, - Hj :[xHij

37



across an element is some function Fij of the discharge through the
element while Equation (5.4) requires that at a reservoir node, the
head is constant. The functional form of Fi
(AH ) =0

cluding simple pipes and minor loss devices as long as a unique

J
is not specified and can represent any element in-

or its inverse Eij

ij

relationship between head and discharge exists.

In general, F.. for most or all (i,j) in E, is non-linear, thus

1J
necessitating iterative techniques such as (i) Hardy Cross, (ii)
Newton-Raphson, and (iii) linearization, to be used to solve the
governing network equations. Most of these techniques are detailed
in Chapters 3 and 4, Each of these methods is simply a technique
for solving a set of non-linear simultaneous eguations which have
been adapted to the network analysis problem. Each is iferative in
naturs and begins with an initial <rial solution. A new solution
is obtained by solving a set of linear equations,usingbstraight—
forward procedures, If the new solution differs from the trial
solution by less than z specified amount theﬁ the iteration stops;
Otherwise, the new solution becomes the trial solution and the
procedure is repeated. In some of the algorithms, an initial trial
solution sufficiently close to the frue solution is required to en-
sure convergence. The differences in the methods result from. the

se of different strategies to determine the new solution.

The new approach by Collins, Cooper, Helgason and Kennington
(1978) repreéents a radical depérture from the state of the art
iterative methods as optimization models are employed to Solve the
network problem. Two alternatives models are-formﬁlated and these

models play analogous roles to the node versus loop formulations
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for solution of the network equations used in the state of the art
methodé.
The first of the two optimization models, called the Content

Model assumes the form

, . Qs - Q

Minimize G = 2. ‘E lJFjj(t)dt] - 2 , [J Slaxat +
(]iJ)&E 0 ._ ! (gtn)&El' 0 n
S [, ]

: HE at

(n,g) @B, |J, :

Subject to :
> Q- 2 Q. =r_, all neNU(g)
(n, j) &EUE, (i,n) &EUE, in

Q5 2 0, a1l (i,3) &EUE)
in which E is the arc set for a.network in which the arcs have been
replaced by two equivalent oppositely directed one~way elements so

that Qij can assume only positive values. This replacement is done

as a mathematical convenience so thzt Qij can be treated as a con-
strained decision variable in the optimization model which has a
non-negativity condition imposed on Qij
solution obtained by solving the E network wili-produce identical

. It can be proven that the

results as those which would be obtained by solving the original

EO network which permits Qij

merely a set of arcs connecting all nodes in N to a ground node g

to be unconstrained, The arc set El is

and is introduced to satisfy mass conservation for the network as

a whole (Equation (5.2)). | |
Using the terminology of Chefry and Millar (1951), the above'

problem is to find a set of flows which satisfies flow conservation

and minimizes system content, G, hence the name Content Model.



The second optimization model, the Co-Content Model, is a

complementary (bul not dual) model which has the form

. " e , AH -
Minimize J = y. I AHi ] DN TE at
. (1,))&E || Eyy(t)dt ng N "n

subject to

AH, .+ Ang —v,AHig = 0, a.ll (i,J)EE

Atpg = Hf - 1, all neR

:'
[3)

In the terminology of Cherry and Millar (1951), the above
problem is to find a set of head losses whichsums to zero arbund
all loops and minimizeslsystem Co~Content, J, hence the name Co-~
Content Model.

Using Kuhn=Tucker theory (Kuhn and Tucker, 1950), it can be
proved that the solution to either of fhese models yields the
solution to the pipe network problem, that is, the optimal solution
satisfies the governing network equations. The proof is carried
out by examining the derivatives of the objective fﬁnction and show-
ing that the derivative conditions for a stationary point, along
with other constraints, are identical to the network equations.

In the proof, it is assumed that the Fij and Ej 3 functions
are monotonically increasing. This assumption insures the convexity
of the objective function which in turn guarantees the existence of
a unigue solution to the optimization problem. The monotoniéity of
F

and Ej: merely implies the fact that energy losses in a net-

J ,
work element increase with increasing discharge. -

ij

‘The Content Model has the special structure of a convex cost
network flow problem for which efficient routines are available,

Numerous non-linear algorithms such as (i) Frank-Wolfe method,

40
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(ii) piece»wiée linear approximation and (iii) convex-simplex
method are available for solving such a problem.
The use of mathematical programming techniques in pipe net-
work analysis has paved the way for potential research in the
following areas: |
(1) Extension of mathematical brogramming techniques to
| solution of compressible flow pipe network analysis
problem,
(ii) Incorporatioﬁ of time variable storage in network elements
to solve'transient network problems.
(1ii) Use of mathematical programming techniques . to solve
complexiopen channel networks. |
(iv) Feasibility of using mathematical programming techniques
to solve network parameter identification problems such
as the_headmdiséharge relétionship'in pipe network analysis.,
(v) Development of an economic model to minimize the operation-
al costs for a flow network with operational behavior

given by one or more network problems.

5,2 COMPUTATIONAL EXPERIENCE

A computer program was written based on the linear theory
method (Wood and Charles, 1972) described in Section 4.3. The pro-
‘gram was designed to solve the system of loop and node equations»
using the iterative proéedure described by the method. Two features
this FORTRAN computér program may have for general application
includes: | |

(i) the capability of handling networks containing pumps
and feservoirs, and
(ii) an algorithm which.analyzes networks containing pressure

regulating valves.



The use of the node incidence matrix and fundamental loop
matrix described in Section 2.1 in the algorithm has provided an

efficient means of translating information contained in any pipe

network into a network simulator. Incidentally, the node equations

and loop equations were formulated using the node incidence matrix
and fundamental loop matrix respectively.

In carrying out all computations, friction losses in pipes
were assumed to be described by the Hazen-Williams equation and
pumps were described'by the quadratic form (Equation 2,13). The
convefgence criterion employed was e

| > lQi = Qi»ll
¥fe |

in which Qi is the flowrate obtained for a trial and inl is the

< 0.0005

flowrate obtained from the preceding trial. This appears to be a
stringent requirement which may assure good accuracy if the condi-~
tion is satisfied. However accuracy is achieved if and only if
continuity at every node ahd the energy equations are exactly
satisfied.

A small seale network, taken from Jepﬁson (1977, p.109) and
shown in Fig 5.1, was tested, This 8 pipe,5 node network, with the
properties given in Table 5.1,»has 2 reservoirs, a pump and a
pressure regulating valve. The solution fo the test problem and‘
the solution reported by.Jeppson (1977, p.110), using the same
theory are tabulated in Table 5.2, The results appear to be in

good agreement,

L2
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| ‘ | p 2.0 cfs
8) o ($) N\ ’
sl [3 51
: ' 1.0 efs
Fig 5,1 - Test Problem
’ Hazen~-Williams
Pipe Length (ft) Diameter (in) Coefficient
1 1000 6 110
2 800 6 120
3 1000 6 110 |
L 800 6 120 |
5 1200 6 120
6 1000 6 120
7 500 8 130
8 500 3 130

Table 5.1 - Network Parameters

Discharge (cfs) Head (ft)

1.0 0.0
1.5 35.0
2.0 26,0

Pump Characteristics



Discharge, cubic ft per sec
Pipe
Writer's Solution Jeppson's Solution

1 2.53 | 2.56
2 -0.38 - -0.32
3 2.47 2,44
L 0.72 _ 0.73
5 0.92 0.88
6 1.08 ' 1.2
7 1.81 1.83
8 3.19 3.17

Table 5.2 - Solution to Test Problem

The detailed solution and program listing are contained in the
Appendix. With this program, "the test problem took 0.12 second of
execution time cnanAmdahl 470 éomputer.'The number of iterations’
required to meet the convergence critefion was 6. The subroutine
used for sol?ing fhe linearized set of loop equations and the
linear node equations simultaneously was developed based on the
Gaussian method of elimination impr0ved by pivotgl condensation
(Tewaréon. 1973).

The capability of the program to handle a larger network has
"not been proven but it would have stretched the available storage
of a computer to its limits if it has been tested. Storage space is
primarily taken‘up by the final augmented matrix which comprises
essentially the node and loop equations., The use of sparse matrix
techniques instead of full matrix methods may extend the capability
of the program 0 analyze larger networks of a few hundred pipes

and nodes.

L
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CHAPTER 6

CONCLUSION

The Hardy Cross method which sparked off’ the evolution of the
numerous technigues of simulating pipe networks, is suitable only
for relatively small networks. With the advent of the computer,
and as larger and more complex networks were analyzed, the Hardy
Cross method was found to frequently converge too slowly if at all,
The classic method which is described in most hydraulics or fluid
mechanics text books, is an adaptation of the Newton-Raphson method
which solves one equation at a time before proceeding to the-next
equation during each itefation instead of solving all equations
simultaneously. The single path and single node methods described
in Sections 4.1.,1.1 andAh.l.Z.l respectively, are basically the
classic Hardy Cross methods. Procedures developed to improve the
convergence of the single path method were described by Martin and
Peters (1963) and later by Epp and Fowler (1970). The procedure
involves the simultaneous computations of flow adjustments and was
presented in Section h.l.l;Z. A similar approach has been developed
for the node equations where all node equations are linearized and
solved simultaneously. This method is deséribed by'Shamir and Howard
(1968). A1l of the four methods mentioned so far.require an initial
guess as to the solution and the rate of convergence depends to
a degree on how close this initialization is to the correct solution.

For the system of equations which is flowrate oriented, two
linearizatlon techni@ues (Wpod, 1981 and Wood and Charles, 1972)
were described in Sections 4,1.1.2 and 4.3 respectively. Both of
these procedures do not require an initialization and have been

reported to converge in a relatively few iterations.
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Significant convergence problems were reported for the Single
Path, Single Node and Simultaneous Node Methods (Wood, 1981). It
has been suggested that if a specified stringeht convergence crit-
erion cannot be met using single adjustment methods, the solution
is probably unreliable, For the simultaneous node adjustment method,
it has been suggested that thevbest indication of an acceptablé
solution 1is that the average relative unbalanced flow at the junc-
tion nodes be less than 2%. Instances of failures have also been
reported in cases where line losses vary greatly or pumps operate
on steep cﬁrves even When'good initial approximations are available.

The simultaneous path methods and the linear method using
gradient approximations, were reported to provide excellent conver-
gence and the attainment of a stringent convergence criterion is
sufficient to assure great accuracy in‘most*cases. In the study
carried sut by Wood (1981), in which a wide variety of situations
was.represenfed, some incorporating features which increase conver-
gence difficuities like low resistance lines; these methods were
reported to attain accurate solutions in a relatively few iterations.
However, if gradient approxjmations are used to handle non-linearity,
convergence problems are always a possibiiity. especially if ill-
conditioned daté such as poor pump desériptions are smployed.

of ali methods, the linear methods developed by Wood and
Charles (1972) and a later version by Wood (1981), who used gradient
approximations, c¢ffer more advantages, A balanced initial set of
Ilowrates is not regquired since the‘continuity‘cbnditions are
" already incorporated into the basic set of equations; These algor-
ithms permit abmore'direct and reliable incorporation of hydraulic
components such as check valves, closed lines and pressure regulat-

ing valves, For any pipe network simulators to be of general use,
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these components, which affect continuity, and their effects on
the hydraulics of the network must be incorporated into the basic
set of equations. However, the set of equations solved by the
linear methods involved significantly more equations which will be
a setback if full matrix méthods are used, The use of sparse
matrix techniques has somewhat corrected this disadvantage and
has rendered it a more desirable élgorithm to adopt for analysis
of pipe networks.

The use of mathematical programming techniques in pipe net-
work analysis holds a lot of promise for the future. One of the
direct cbnsequences of the theory described in Section 5.1 is the
identification'of a unitary measure by which the goodness of a
solution can be gagéd. Traditional methods described previously
give no good insight into the goodnesé of an approximate solution,
particularly for large scale problems. The optimization models
remove the vagueness that inherenfly surrounds a definition of
" close " when an attempt is made to utilize a comparison of indi-
vidual flows, heads, or losses in individual elements, Optimization
techniques also have their setbacks. One is that functions describing
friction losses, minor losses in pipes and pump heads must necess=~
arily be convéx functions for a.solution to be ggaranteed. In
addition, head loss mus t bé a unique function of discharge. Such
uniqueness may not exist for certain confrol elementé such as check
valves and pressure regulating valves., Until these problems are re-

Solved, its application will be limited in scope.
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MODE 1/0 NO. READ IN AFTER A PRECEDING PIPE 1/D NO
READ, MMJN,  CJNLCT J)s Jels NMJN
1100 NIKOLY=NMJIN

LX=0
14 DO 18 I=1, NP
18 G(I, 1i=1.
Do 20 I 1 NPUMP
20 &{I,
Kh= 1
200 KB=KB+1
DO 25 I=1,MJLR
DO 29 J=1, NAPC
2% FIMOI, J)=0.
FORMULATION OF NODE INCIDENCE MATRIX
DO 30 I=1.MJ
NM=RR (T}
DO 30 J=1. NM
CFN=IABS (NI, J3 )
IF (ON{T, ) 26, 28, 28
246 FIMOI, MMy=-—1.
@0 T 30
28 FIMOI, MMi=1.
a0 CONTINUE
FORMULATION OF FUNDAMEMTAL LOOP MATRIK
DO 40 I=1.MNL
PiN=NLP (1)
B0 40 J=1.
HL*IABS(LP(I JI3
IF (LPCT,Jry O3,
33 FIMNJIED ML y=-1.
G0 TO 40
37 FIMIMJ+I, MLY=1.
40 COMTINUE
DO &40 I=1.NL
IF (I-MRLP) 44, 44, 42
A2 FIMINJEIL, MAPC ) =H2 (I -NRLP }-HI (I -NMRLP)
844 LN=MLF{I}
DO &2 =1, LN
KPA=TARB(LP (T, J)2
DO &1 K=1, NPUMP
IF {KPA-KP (KR)Y) &1, 46, 641
46 IF (LR {5, J)) 48, 50, 50
48 HPS=R{K)#x2 /(4 24K} ) -HOK)
45 géﬁ%gd+l MAFPC Y =FIM{MJ+I, NAPC ) +HPS
o0 ggSTHU(K) ~BUK s /04, &K}
&1 CONTINUE
G2 CONTINUE
&GO CONTINUE
DO &5 I=1.,RnNJ
G5 FIMOI: MAPC )=RFLOW{I)
COMPUTATION OF LINE & MINOR LOSBES
DO 70 I=1,NP

a7, a7

FO OXAT(I)=(a S2ES#XLII)H(ABS{G(I, KB-1)) }usd, G5}
#/(HWC (Tl GoReDIA(L)exd, 873+, #XKM{I)#ABRG(
#Q (1, KB~ 1))/’(3"’1 2%3. 14159342, #DIA(T ) %84, )

BO 789 Is=1,ML
DO 75 J:IINP
75 FIMIMJI+T, Ji=FIMNJ+L Q) EXRT (J)
MJL =NJ+RE
DO 100 I=1,NL
LM=MLP (I}
DO 100 J=1,LHM
KPa=TARSILP (I, JJ}
DO 100 K=1, NPUMP
IF (KPA&-KP (KY) 100, 80, 100
80 IF (LPdI:J)) 82,84, 84
G2 FIMINJ+I, NE+R)=A (K I#ABS (S (K, KB~1)}
&0 TO 86
84 FIMIMJISD, NPHR =8 (K)$ABS{E (K, RB-1) )
86 FIMIMJA K, KFA)Y=—1,
FIMOMJL AR, NPHK ) =1,
FIMINJLAK, NAPC =B (K) /(2. #a4{K))
100 CONTINUE
IF (LX) 102, 102, 200
102 CALL GaUBSFIM: X, MJLR)
QTOT=0.
QFLCH=0,
DO 105 Is=1i.NP
GQiI. KBI=X{1)
QTOT=QTOT+ABS (X (1))
105 QFLCH=ABE(Q(I, KB)}~-Q(], KB~1) ) +QGFLCH
ERR=QFLCH/QTOT-Q. 0005
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104
110

1id

Lis
130

141
142

145

150
155

160
149
170
200

210

310

320
325

330
327

3530
aé1

36T

370
S80

440
410

e 55
110, 130

®Y

Py 112,115,115

GO 70 1é6

CONTINUE

el TO 900

IF (KB-MAX) 140, 140, 150

IF (KB-2) 500, 500, 141

DO 1482 I=1, NP

Q(I, KBI=(Q{I, KBI)+Q{I, KB~1)}/2.

DO 145 I=1, NPUMP

G{I, KE ) ={Q(I, KB+ (I KB~1)) /.

&0 TO 500

PRINT 155

;g?ﬁ?TlégX:’DESIRED ACCURACY CANMNOT BE ATTAINED )
FORMAT (2X, ‘IN NO. OF ITERATIONG SPECIFIED /)
PRINT 1465, MAX

FORMAT (22X, ‘RO, OF ITERATIONMS SPECIFIED = 7. 12/3
PRIMT 170, ERR

FORMAT (22X, "ERROR = L, F10.3/7)
&0 T 900
=0

DO 250 I=1.NPRV
KPRV=NVALNV{T)

IF (QUKPRV, KKE)Y)Y 210, 250, 250
Xl X+ 1

KPRVE{L X ) =KPRY

MRLP I=MRLP+1

S DO 240 J=NRLP L, ML

LoJe=RLP (03

DO 240 =1 LJ

Sy 245,213, 249
B17., 217
Mty NAPC §—~H2 ( J~NRLLP )

a3 ==
z
b
e
&
e
o
gy
<<
vv ol g S

CALL GAUSSIFIM, X NJLR?

DO 300 I=1,LX

KNO=KPRVE (1)

DO 300 J=1., NPRV

IF CANO-NVALV GO )Y 300, 270, 300
HEL =X (RN

X{RND =0,

JAC (T b

CONT IMUE

QTOT=0,

GFLCH=0,

DO 310 I=1. NP

QI KBy=X{I)
GTOT=GTOT+ABS(X (1)}
QFLCH=aRS(Q(T, KB)-Q(1, KB-1) +QFLCH
ERA=QFLCH/QTUT-0. 0003

IF {ERR} 320, 320, 350

DO 327 I=1,LX

FORMAT (22X, "HYDRAUL IC GRADE IMMEDIATELY )
PRINT 330, JaAC(I), HEL(I
FORMAT (22X, "DOWNSTREAM DF PRV I3, ¢ = 7, F&.&2/)
CGNTINUE
TO 900
IF {KB-MAX Y 3860, 360, 400
IF {KB--2) 500, 300, 3&1
DO 380 Is=1, NP
DU 365 Je=1, LXK
(I~KPRVS(J)) 365, 370, 365
CDNTINUE
QI WB)={Q{I, KB}+Q(I, KB-1)) /2.
G0 TO 380
G(I, KBI=0,
COMT INUE
GO TO 500
PRINT 410
FORMAT (2X. ‘DESIRED ACCURACY CAMNNOT BE ATTAINED?)
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420
430
440

300
870

892

20
210

1400
153
2000
4100
4102

4320
4300

2410
2400
2500

3002

3150

3200

3210
d2iz

56
PRINT 420
FORMAT (22X, ‘1IN NO. OF ITERATIONS SPECIFIED )
PRINT 430, MaX

FORMAT (2X, 'ND. OF ITERATIONS SPECIFIED = /. 1h
PRINT 440, ERR

FORMAT (2¥, ‘ERROR = 7, F8. 53/

@0 TG 320

PRINT 8%0

FORMAT (717,194, P T PE DI SCHARTGE?)
FPRINT @92

EFORMAT (14X, "BUEES 05808888 sadees /)

DO P10 I=1, NP

PRINY 920, I, {1,

FORMAT (1&X;'DI&CH#RGE IN PIRE N3 7, 13,7 = 7L, F5 2
#7  CF5/)
CONT INUE

IF {(I-NVAL

XL AT y=XL (X
GO0 TO 1450
CONT INUE

XUT{I)=(8 BPES#XL{I)#(ARS{Q(I, KB} ) r&x
FAHWC (D) #nl. A928DIaA(I yend, 87 34+8, #XKM{T
#{32. 283, 141593842, ¥DIA(T yuxd )

? 1400, 1500

S/

i@
PEABS(R(I, KB/

CONT ITNUE

FRINT 4100

FORMAT (/771865 " HE AD L OB &8ES)
PRINT 4102

FORMAT (144, "EHBHEEEEREREBEREREER TS

DO 4300 I=1, NP

PRINT 4320, I, XKT{I

FORMAT (1&X, "HEAD LGS IN PIPE NGO, 7, I3, = S F& 2
#, 0 FT/%

CONT INUE

pg 2500 Ts=i, ML

MZ=MLP (I}

DO 2400 J=1,MZ

MIP=IARS(LP{I, J}}

IF (QIMZIP.KB)) 2410, 2400, 2400

LPCT, Jis-l P {1, J}
COMT INUE

CONT INUE

DO 3002 J=1,NJ
HD =0,

MRLP I=NRLP+1

DO 3000 T=NRLFI1,NL

MT=NIK{I}

DO 3100 J=1NT

SPe=JML (T, J)

KIP=TARS(LP{I,J))

DO 3200 Kl NEFUMP

IF (KIP-KHP(A)Y)Y 3200, 3150, 3200

HP 1=K} ®{ARBS{Q(KIP, KB uxnd, +B (K«
#ABS(OGOAIP, KB }+HO )

0 TO 3210

CDNTINUE

HR 1=

IF (J~1) A2l 3212, 3240

DO 3218 L=1, NPRY

IF (RIP-NVALVILYY 3218, 3214,3218

3214 XKT(KIP)=XKT{KIP)#{ XL (KIP)~XLPRV(L )} /XL (KIP)
60 TO 3220
3218 CONTINUE
3220 IF (LP(I,J)} 3295 32230, 3230
3525 HD(JP)=H2{ I~-MRLP Y +XKT (KIP) +HF 1
0 TO 3100
3930 HD(JP 1=H2 ( I-NRLP)—XKT (KIP)+HP1
e0 TO 3100
3240 JP1=JNL (I, J-1}
TF (LP{I,J)) 3245, 3247, 3247
3245 HD(JPI=HD(JP 1T+ XKTKIP) +HP 1
60 TO 3100
9247 HD(JP)=HD(JP L) ~XKT(RIP) +HP 1
3100 CONTINUE
3000 CONTINUE
3003 KZ=
DO 3500 I=1, NRLF
NT=NIK{I)
a550 NB=

DO 3600 J=1, NT

JFes WL (s )

KIP=IABG(LP(I. J)} -
IF (HDOJP )Y 3610, 3614, 3610
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3612 NE=NB+1 57
60 TO 3600

3610 IF (J-1) 23600, 3600, 3615

8615 JP1=ubL (1, 1)
IE (HDTJUP1Y) 3600, 4605, 3600

4605 DO 4700 K=1, NEUMP
IF (KIP~KP(K)) 4700, 4610, 4700

4410 HPI=A(KI® (ABS{Q{KIP, KB ) yexd, +0 (K%

#ABS{GQIRIP, KB ) +HOK)
&0 TO 3625
4700 CONTINUE
HP 1=0.
3625 IF (LRI, J )y 3630, 3605, 3635
&30 HDOJP L) =HD{JIP I ~XKTKIPI+HP L
0 TO 3637
3635 HDOIP L i=HD{JP J+EKRTRIP ) +HP L
3437 NB=NBE-1
3600 CONTINUE
IF (NB~-NTw+1) 3501, 3505, 3508
3501 IF (NBY 3500, 3500, 35540
35083 KI=1
3500 CONTINUE
IF (KZI) 39201, 3901, 3003
3901 DO 4000 I=1, NPFRY
MPY=NYALYVOT)
KPV=NBJ(I)
IF (QUNPV,KB))Y 4010,4010, 4015
AG10 HELUT I=HD{KPV)
GO TO 4000
4015 HGLU(I)~HE(KPV) KRTNPYIRXLPRVODY A OXL NPV Y ~XLPRVIT Y )
MEL{I)=ValL . 8T(1}
4000 CONTINUE
PRINT 4350 )
A350 FORMAT (777165, "HY DR AUVUL I C GRADES OF NODEZSB
FPRINT 4360
A3450 FORMAT (1&Y, "H#E8p it s tee 0B rEd g g d et S e et el 8e8% 7 /)
DO 4500 J=1, NJ
PRINT 4400, J, HDOS)
4400 FORMAT (16X, "HYDRAULIC GRADE OF NODE NO. <, I2, 7 = *,F8.2,
*l &
4500 CONTINUE
PHRINT 4510
4510 FORMAT (/7716 U P 8 THEAM/ZD OEBN STREABMS
FPRINT 4315
4515 FORMAT (16X, B R A D E S OF PRV S
PRINT 4520
4820 FORMAT {18Y, "BELREPSHEEPEEEREEERERREN RS H $ERR 807}
DO 4450 I=1, NPRV
PRINT 4455
A445% FORMAT (F16%, "HYDRAULIC CRADE ITMMEDIATELY "}
PRINT 445%&, 1, HELUCI}
4454 EGRE?T/§I&X:'UPSTREAH OF PRY ND, T4, 7 = YRR 2
* ra
PRINT 4440
4440 FORMAT (Iéx,'HYDRAULIC GHADE IMMEDIATELY ‘)
PRINT 4461, 1., HEL{
44461 FDRQ?T/(léX:'DDWNSTREAM OF PRY MO, 7, 12,7 = ‘,F8 2
*i
4450 CDNTINUE
K=K~
PRINT ??Q,KB
230 FUORMAT (//7716¥, 'NO. OF ITERATIUNS P P
PRINT 990, ERR
G990 FORMaAT (146X, ‘RELATIVE ERROR= ‘L F10. &}

BPRINT 994
Fo4 FORMAT (7172

STOP

END

SUBROUTINE GAUSS (A, X, M)
DIMENSION ACL1IO, 111), X{100), Y{100)
M=n+1
NMeZ==pl-1
DO 800 IlI=1,N2
TIT=TI+1
DG 20 I=II.N
20 xéll=ABS<A(I.II))

1.
TRY 11,11, 12
12 TH=Y{1}

Kie=1
11 CONTINUE
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F1IPE DISCHARGE
PR ESLS LSS EEEEE R R

DISCHAREE IN PIPE NOL I = 2,853 OFS

DISCHARGE IN PIPE MO = = ~0,.38 CFB
DIGCHARGE IN PIPE NGO 3 = 2. .47 (FB
DISCHARGE IW PIFE NGO 4 =  0.72 OF8
DISCHARGE IN PIPE NOU 5 = 0.92 CFS
DIGCHARCE IN PIFPE NO. & o= 1.08 CFE
DIGCHARGE IN PIPE NO. Yo=  1.81 COFS
DISCHARGE IN PIPE MO 8 = 3. 19 CFB
HEAD L OS3ERS
FRHERERRHREREEEELEREYR

HEAD LOSE I FIPE NOU o 28 1% FY
HE&D LOBE IM PIPE WO &2 = .64 FT
HEAD LOSE IN PIFE NOL 3 = iz22. 03 FT
HEAD LO88 IN PIPE NOU 4 = 8. 585G F1
HEAD LOBE INM PIPE NO. Do 19.90 F71
HEAD OGBS IN PIPE NO. o= 22,68 FT
HEAD LOSS IN PIPE NO. 7 o= s FT
HEAD LOBE IN PIFE NGO “ o= 17.73 F7

HYDRAULIC GRADES OF MNODES
FHAE RS SRR RN R R R R R R R R R RN R R R SRR

HYDRAULIC GRADE OF NODE NO. i o= 173. 77 FY
HYDRAULIC GRADE OF NODE NGO, 2 = 57.58 FT
HYDRAULIC GRADE OF NODE NO. 3 = &0 22 FT
HYDRAULIC GRADE OF NODE NO. 4 = gz 27 FT
HYDRAULIC GRADE OF MODE NGO o o= 37,86 FT

UPSTREAM/7DODWNSTREA®M
ERADEERE OF PRVEB
BEERREEEELER SR B LR LR SRR E RS RS EEE RS

HYDRAULIC GRADE IMMEDI&TELY

UPSTREAM OF PRV N, 912 FT
HYDHAUL IC GRADE IMMEDIATELY
DOWNETREAM OF PRY NO o= 50. 00 FT

MO OF ITERATIONS = &4
RELATIVE ERROR= 0. 0002468
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