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ABSTRACT 

A ground transient electromagnetic sounding method was evaluated for 

the detection of salt water-fresh water interfaces along the Gulf Coast 

of Florida. Seventy-nine soundings were completed utilizing either 

80 x 80 meter or 160 x 160 meter horizontal transmitter coils. A 30 Hertz 

step function transmitter frequency was used. The decay of the vertical 

magnetic field was monitored over a period of 8 msecs during transmitter off­

time. Measurements of the rate of decay of the magnetic field were converted 

to produce -an apparent resistivity curve for each sounding. Computer pro­

duced theoretical curves were matched to the apparent resistivity curves. 

The results of this study are encouraging. The soundings compare favo­

rably with chloride ion concentrations in area wells and with data from 

previous geophysical studies. An 80 x 80 meter coil is sufficient for sounding 

to depths of 250 meters. Depths and resistivities accurate to within 

plus-or-minus 10 percent of actual field values are possible. The transient 

electromagnetic method is safe, effiCient, and economically attractive. 
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INTRODUCTION 

Ground water continues to be the primary source of potable water for 

many of Florida's coastal communities. Rapid population growth in recent 

years has caused concern for the quality of this abundant, but vital 

resource. Salt water intrusion poses a serious threat to the quality of 

the groundwater in coastal aquifers. Intrusion has already occurred in many 

areas along the Gulf coast of Florida (Causseaux and Fretwell, 1982; Mills 

and Ryder, 1977; and Sherwood and Klein, 1973). Fresh water injection 

(Bruington, 1969) and pumping of brackish waters (Gregg, 1971) have brought 

limited success in controlling salt water intrusion, but these methods are 

expensive. Efficient management of ground water in coastal aquifers is 

dependent upon inexpensive and reliable methods of detecting and monitoring 

changes in the position of the salt water - fresh water interface. 

The sampling of well water for chloride content is the standard method 

of monitoring interface movement. Construction of minitor wells is costly, 

however, and this method cannot provide sufficient data density for adequate 

delineation of the interface. Wells of opportunity are often sampled as a 

means of supplementing this data, but depth control on such wells may not be 

reliable. Certain geophysical methods appear to be suitable for monitoring 

the salt water - fresh water interface. This study evaluates transient 

electromagnetic soundings for locating the interface. 

Objectives 

The objectives of this study are: 

1. Mapping of the deeper portion of the salt water interface in the Coastal 

Rivers Basin, Florida. 



2. Comparison of the results of the transient electromagnetic survey 

with data obtained by other geophysical and geochemical methods. 

3. Determination of the most efficient field and interpretation techniques 

applicable to this problem. 

4. Assessment of the potential of the transient electromagnetic method 

for ground water quality investigations. 

5~ Preparation of a cost/benefit analysis of the transient electro­

magnetic method as compared to other methods. 

Scope 

This study was conducted in Pasco, Hernando, Citrus, and Levy Counties, 

between latitudes 28°25 1 10"N and 29°03 1 10"N, and longitudes 82°28 1 10"W and 

82°41 '35"W. The study area is indicated by the shaded area in Figure 1. 

Seventy-nine soundings were made during 18 field days during May and June of 

.1982. Figure 2 is a map showing the locations of all sounding sites. Results 

-from these soundings were compared to available chloride data and data from 

previous geophysical investigations conducted in the area. 

Previous Investigations 

Direct current resistivity techniques have been widely used to detect 

ground water contamination. Cartright and McComas (1968); Kelly (1976); and 

Stollar and Roux (1975) detected contamination derived from landfills and 

industrial sites.· Swartz (1937, and 1939) pioneered the use of direct current 

(DC) methods as a means of locating salt water interfaces, by delineating fresh 

water lens boundaries in the Hawaiian Islands. Bisdorf and Zohdy (1979) 

and Fretwell (1978); used DC methods to map the interface in Citrus County, 

Florida. 

Ryu and others (1972) were the first to suggest the possibility of using 

electromagnetic (EM) sounding as a means of locating and monitoring coastal 
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Figure 1. Map of Florida showing the location of the transient 
electromagnetic study area. 
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salt water - fresh water interfaces. They used frequency domain electro­

magnetics to search for potential aquifers in the Santa Clara Valley, Cali­

fornia. Frequency domain electromagnetic methods have been used to locate 

the interface in Citrus and Collier Counties, Florida (Stewart, 1981). Both 

DC and frequency EM methods have been used and compared in the Belle Meade 

area of Collier County, Florida (Layton, 1981; and Stewart, 1981). 

The transient EM method was used to search for potential geothermal 

energy sources in Hawaii (Kauahikaua, 1981). A computer-aided literature 

search conducted in May, 1982 yielded no reference to the use of transient 

EM methods for the purpose of locating salt water - fresh water interfaces. 

Geology 

Several hundred meters of Tertiary limestone units comprise the sub­

surface geology in the study area. These units exhibit very gentle dips 

toward the south and southwest (Wetterhall, 1965). Exposed rock units became 

progressively younger toward the south. Figure 3 shows the surficial geology 

of the study area. The entire area is underlain by Lake City Limestone (Fig. 

4). The Lake City Formation has been' completely dolomitized and later impreg­

nated with gypsum and anhydrite (Vernon, 1951). It forms an effective lower 

confining unit for the Floridan Aquifer. The Lake City Limestone is overlain 

by the Avon Park Formation, the Ocala Group, and Suwannee Limestone. The 

Alachua Formation is exposed just outside the eastern edge of the study area. 

Carbonic acid, formed by the saturation of water with carbon dioxide, 

is instrumental in dissolving large quantities of subsurface limestone 

(Krauskopf, 1979). Surface expression of this is evident in the number of 

small lakes and sinks in the area. Dissolution of limestone is most intense 

just below the water table (Smith and Randazzo, 1975). Sea level changes 

associated with Pleistocene glaciation have caused significant vertical 
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Figure 3. Geologic map of the transient electromagnetic 
study area. After Vernon and Puri, 1965. 
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movements of the water table and thereby insured the formation of a highly 

complex, interconnected porosity system within the limestone (Smith and 

Randazzo, 1975). This system is capable of storing and transporting very 

large volumes of water. Because of the predominance of subsurface flow, 

ther~ is little surface runoff. Several small streams originate as springs, 

and receive little direct runoff (Cherry, et al., 1970). Relief varies 

from 20 to 30 meters in the eastern part of the study are to less than 2 

meters toward the west. 

The dominant structural feature is the post-Oligocene Ocala uplift 

(Vernon and Puri, 1965). Associated with the uplift are several minor, NW-SE 

trending faults and grabens. The best known of these within the study area is 

the Inverness Fault which cuts across the northeast corner of Citrus County 

(Vernon, 1951). 

THEORY 

Nature of the Salt Water - Fresh Water Interface 

Under ideal hydrostati c condit'ions, fresh water and saltwater behave 

as immiscible liquids with the fresh water floating horizontally over the 

more dense salt water (Freeze and Cherry, 1979). The depth to the interface 

can be calculated by the well known Ghyben - Herzberg equation (Freeze and 

Cherr, 1979): 

where: Zs = depth to the interface below sea level, 

df = density of fresh water, 

ds = density of salt water,and 

hf = height of the water table above sea level. 

(1 ) 
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Substituting values of 1.0 and 1.025 for df and ds ' respectively, equation 

(1) becomes: 

Ideal hydrostatic conditions do not exist in nature. Mixing of fresh 

and salt water creates density gradients which cause a continuous landward 

~f10w of salt water at the base of the aquifer. At the salt water - fresh 

water interface salt water is diluted, becomes less dense, and rises (Cooper, 

et"al.,1964). At higher levels it is carried seaward by flowing fresh 

water. The result of the opposing flows of salt and fresh waters is the 

establishment of a dynamic equilibrium at the interface. 

The interface is a landward - dipping transition zone of varying thick­

ness. Dip direction may be locally reversed as described in the discussion 

section of this paper. During periods of reduced fresh water flow, the inter­

face migrates landward, and contamination of wells may result. Normal sea 

water contains 35,000 milligrams per liter salt or 19,000 milligrams per liter 

chloride. Chloride levels of only J50 milligrams per liter are considered 

non-potable. 

Electrical Properties of Earth Materials 

Electrical resistivity is an intrinsic physical property of soils and 

rocks. It is measured in ohm-meters. Conductivity (the reciprocal of resis­

tivity) is measured in mhos/meter, and is a measure of the ability of a 

substance to conduct an electric current. Resistivity should not be con­

fused with resistance. Resistance is a function of both resistivity and the 

specific size and shape of an object. Resistance is related to current and 

potential by Ohm1s law which states: 

9 



where: 

I = E/R 

I = current measured in amperes, 

E = potential measured in volts, and 

R = resistance measured in ohms. 

(3) 

Bulk electrical resistivity of p,?rous earth materials is a complex 

property dependent upon several factors. Conductivity of the solid matrix, 

electrolytic conductivity of fluids contained within the matrix, and the 

dielectric constants of both solid and fluid materials influence the overall 

conductivity and resistivity of porous materials (Telford, et al., 1981). 

Most rocks are poor conductors. Current flow in porous rocks is concentrated 

within the pore spaces. The geometric arrangement of pore spaces and the 

electrical conductivity of fluids'in these spaces are therefore the predomi­

nant factors affecting bulk resistivity of porous rock (Telford, et al., 

1981). Rocks saturated with saline waters exhibit higher conductivities 

(lower resistivities) than fresh-water saturated rocks of equivalent porosity 

because fluid conductivity increases with an increase in electrolyte concen­

tration. Rocks with lower porosities exhibit higher resistivities (lower 

conductivities) than more porous rocks. 

Transient Electromagnetic Theory 

All electromagnetic methods depend on the electromagnetic induction of 

secondary eddy currents in the ground by a primary alternating electric cur­

rent. A primary transmitted current generates a magnetic field, the direction 

and strength of which are directly related to the direction and strength of 

the current. If the current and attendant magnetic field vary with time, an 

electromotive force is induced in the ground. The magnitude of this force is 

10 



proportional to the time rate-of-change of the magnetic field, (Sears and 

Zemansky, 1970). The electromotive force causes secondary currents to flow 

in the ground. 

In transient EM, a low frequency alternating current is caused to flow 

in a large, horizontal, wire transmitter loop. The wave form of this cur­

rent is shown by Figure Sa. Current turn-on induces small unwanted transients 

in nearby conductors. A steady current level is maintained for a short period 

of time to allow these transients to dissipate. Current turn-off is a steep, 

linear ramp function. It is desirable to terminate the primary current and 

magnetic field rapidly so as to produce a large electromotive force of short 

duration (Fig. Sa, Sb). Primary current remains off during secondary current 

and magnetic field decay (Fig. Sa, Sc). 

Decay of the secondary magnetic field creates an electromotive force of 

its own. This force produces a small but measurable voltage in a small 

receiver coil. It is important to note that the receiver senses the electro­

motive force or time rate-of-change of the magnetic field, and not the field 

itsel f. 

The seconda(y current and magnetic field decay over time as a function of 

the conductivity and geometric configuration of the subsurface. The variation 

of the secondary magnetic field over time should yield information about the 

electrical properties and goemetry of the ground. The current and magnetic 

field in a conductive earth decay slowly. The resultant induced electromotive 

force, or voltage measured in the receiver coil, is initially small, but decays 

slowly (McNeill, 1980a). The rate of decay of a field in a resistive earth 

is greater. The induced voltage is initially high, but decays rapidly 

(McNeill, 1980a). 

In transient or time domain electromagnetic sounding, a series of 

11 
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electronic gates or channels is used to sample the output voltage or rate of 

decay of the secondary magnetic field in the ground (Fig. 6). Receiver out­

put voltage varies less rapidly during later stages of decay. A logarithmic 

distribution of sampling gates over time is therefore more efficient than 

a simple linear distribution. For a 30 Hertz transmitter frequency, 20 

narrow gates are spaced over two decades of time (80 usec to 8 msec) after 

termi nati on of the primary current and fi el d (McNei 11, 1980b). 

Secondary current induction is a continuous process. Immediately upon 

termination of the primary current, a surface current flows such that the 

current maximum is located just below the transmitter loop. This current 

begins to diffuse into the ground as induction continues. Figure 7 is a 

vertical cross section through the transmitter loop. The figure depicts 

the movement of a decreasing current maximum downward and away from the trans-

mitter loop. The current maximum moves in this manner because current decay 

occurs later at depth and at a distance than in the immediate vicinity of 

the transmitter loop. Actual current flow occurs in horizontal concentric 

rings and does not possess any ver~ical or radial component. The apparent 

vertical and radial flow is the result of induction. 

Movement of the current maximum is a function of subsurface conductivity. 

The movement is more rapid for materials of low conductivity. The lateral 

distance to the current maximum is proportional to: 

d = 2-n-(~) ! 
Mv . 

(4) 

where d = distance to current maximum, 

t = time, 

)..A = permeabil ity of free space, and 

0- = subsurface conducti vity. 

13 
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McNeill (1980a) recognizes three pha'ses of current decay. Immediately 

upon termination of the primary magnetic field, secondary currents flow so 

as to maintain the original field strength and distribution. This phase is 

called "early - time". Current decay begins quickly, however, and current 

distribution changes with time. The time characterized by changes in the 

current distribution is called "imtermediate - time". After the current 

maximum has moved away from the transmitter and an appreciable distance out 

beyond the receiver, the current distribution between the transmitter and 

receiver remains uniform. The period of time characterized by uniform cur­

rent distribution is called "late - time". 

The salt water ~ fresh water interface is best treated as a layered earth 

model in which a layer of resistivity 1 and thickness hl (fresh water saturated 

zone) overlies a layer of resistivity 2 (salt water saturated zone). The 

channels or gates sample the field decay during "late time". Decay during 

"late time" is exponential at a rate dependent upon the resistivities and 

thicknesses of the layers. Response in the early channels is characteristic 

of upper layer resistivity; while middle channel response is diagnostic of 

upper layer thickness; and response in the later channels is a function of 

lower layer resistivity. 

METHODS 

Field Methods 

Potential sounding site locations were selected from 1:24,000 scale 

separate air photographs. Site selection in the field was based on access, 

vegetative cover, and the location of potential noise sources, such as power 

lines, fences, buried pipelines, etc. Site locations and elevations are given 

16 



in Gay, 1983. Seventy-nine soundings were completed during the instru­

ment rental period. An 80 meter square transmitter loop was used for 70 sites. 

A larger, 160 meter square loop was used for 9 sites. 

The instrument used was a Geonics EM 37 Ground Transient Electromagnetic 

System (available from Geonics Limited, Mississauga, Ontario, Canada). Four 

modes of transmitter-receiver synchronization are available: reference cable, 

crystal controlled, primary pulse, and radio. The reference cable mode of 

synchronization was used exclusively. A one meter diameter receiver coil 

was positioned at the center of the transmitter loop. Transmitter frequencies 

of 30 Hertz and 3 Hertz were used. Signal strength was integrated over a 

period of approximately 30 seconds as a means of increasing the signal-to­

noise ratio. Three readings (in millivolts) were taken for both positive 

and negative current polarities for each gate. 

Data Interpretation 

Average readings for each gate were entered into a simple computer pro­

gram which calculates apparent resistivities. Apparent resistivity as a 

function of time is 

(5) 

where Pa = apparent resistivity, 

~ = permeability of free space, 

t = time, 

M = dipole moment, and 

Bz = output voltage. 

17 



Standard two layer master curves (Fig. 8) are available for interpreta­

tion of apparent resistivity values (Kaufman, ~~., 1969). The logarithms 

of apparent resistivity values are plotted against the logarithm of the 

square root of time. Figure 9 is an example of one of these plots. 

Listings of the field data and apparent resistivity curves are given in 

Gay (1983). The master curves are matched to each plotted apparent resistivity 

curve until the best two layer solution for that site is found. Each master 

curve represents a specific combination of depth and resistivity. Data 

obtained from the 3 Hertz soundings were highly irregular and were not used. 

These data are the responses from depths far below the salt water-fresh water 

interface. 

Two layer solutions were not adequate for most soundings. Interpretation 

of data from these sites required 3 or 4 layer solutions. The number of 

resistivity-thickness combinations, and hence the number of required master 

curves, increases rapidly with an increase in the number of layers. Master 

curves are available for three layer hand solutions, but computer solutions 

are more efficient for multi-layer (3 or more) interpretations. 

Multi-layer interpretation was accomplished with the aid of a computer 

program (ALEX. FOR) available from Geonics Ltd. This program does not invert 

the data or produce its own iterative solution. The program produces a 

theoretical sounding curve for a given set of thickness and resistivity 

parameters. The theoretical curves were compared to the plotted apparent 

resistivity curves in the same manner as the two layer master curves. The 

two layer hand-fitted solutions served as guidelines for the selection of 

18 
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parameters for the initial curve matching attempt. The parameters were 

adjusted with each successive matching attempt until a satisfactory solution 

was obtained. 

The decision to accept a given solution is largely subjective. 

Figure 9 shows that for most cases, the actual and theoretical sounding 

curves match one another quite well. In many cases they are almost 

indistinguishaale. The differences are less than those obtained by 

intentional 10 percent alterations of thickness or resistivity values. 

Several other models are available for the multi-layer solution of 

transient EM sounding data (Koefoed et al., 1972; Lee and Lewis, 1974; 

Mallick and Verma, 1978; Mallick and Verma, 1979; Morrison et al., 1969; 

Mundry, 1967; and Raiche and Spies, 1981). 

RESULTS 

Interface Map 
., 

Figure 10 depicts a sounding solution as a vertical section. The 

resistivity contrast between the first and second layers is quite pronounced, 

the upper layer being the more resistive of the two. The upper layer is 

interpreted as the fresh water saturated zone. The second layer is inter­

preted as a zone of salt water saturation. All site solutions are listed in 

tabular form in Appendix Table A3. 

The salt water-fresh water interface map is a contour map of the 

depths to the boundary between the two upper layers. It should be emphasized, 

however, that the actual interface is a zone of varying salinity, not a 

\ 
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sharp, two-dimensional surface. Figure 11 is a map of the position of the 

salt water-fresh water interface relative to the land surface. Figure 12 is 

a map of the interface relative to mean sea level. Dashed contours on 

Figures 11 and 12 indicate uncertainty in the data. 

A lower layer of very high resistivity was detected under most sounding 

sites (Fig. 10). The upper surface of this layer is located within the 

Avon Park Formation and above the presumed first occurrence of anhydrite. 

Figure 13 is a contour map of depths to this surface relative to mean sea 

level. The high resistivity of this layer is a consequence of the lack of 

effective porosity and permeability of both the Avon Park Formation and the 

underlying Lake City Formation. 

Reentrants 

Examination of Figures 11 and 12 reveals the presence of three major 

interface reentrants in Citrus County. These are located near Hall's River 

and Homosassa Springs, near Crystal River, and in the area just to the 

south of Lake Rousseau and the Cross Florida Barge Canal. The,salt water­

fresh water interface map, based on transient EM sounding data, compares 

favorably with data from previous geophysical and geochemical surveys. The 

reentrants are convenient areas for data comparison. 

Chloride Data 

Chloride data taken from monitor wells and wells of opportunity were 

compiled from four sources (Causseaux and Fretwell, 1982; Southwest Florida 

Water Management District, 1982a; Southwest Florida Water Management District, 
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1982b; and U. S. Geological Survey, 1980). Complete chloride, location, and 

depth information was available for 68 wells in the study area. These data 

are listed in Gay (1983). Well locations and the locations of two cross 

sections based on chloride data are given in Figure 14. The general con­

figuration of the interface, normal to its strike, is reflected by the 

isochlors on the Crystal River - Homosassa Airport cross section (Fig. 15). 

A general inverse relationship exists between chloride levels in 

area wells and resistivity values at equivalent depths from nearby 

electromagnetic sounding sites (Fig. 16). It is difficult to establish a 

precise relationship between resistivity and chloride content, however, 

because porosity is extremely variable and exercises a profound effect on 

resistivity. Chloride concentrations at the transient EM interface are 

generally about 200 to 300 milligrams per liter. 

DISCUSSION 

Homosass~Springs Reentrant 

The US-19 cross section (Fig. 17) demonstrates a reversal of the 

usual isochlor configuration in the Hall's River and Homosassa Springs 

area. This reversal is based on the high chloride concentration in well 

28 and is coincident with the reentrant defined by transient electromagnetic 

data. The reentrant is tonfirmed by Fretwell (1978); Bisdorf and Zohdy (1979); 

and Stewart (1981). 

Figure 18 is a map of the potentiometric surface of Citrus County. 

The Ghyben-Hertzberg equation is significant even in the absence of ideal 
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hydrostatic equilibrium, and potentiometric data should reflect the position 

of an interface reentrant. Equipotential lines are locally concentric about 

points of discharge and are generally parallel to depth contours on the salt 

water-fresh water interface map. Ground water follows flow lines normal to 

equipotential lines and convergent on the discharge points. These discharge 

points are the many springs in the area. 

Hall IS River and the main springs at Homosassa discharge brackish 

water (Cherry, et al., 1970). The isochlor reversal in this area implies 

an up-coning of saline water which may be the source of brackish discharge 

in these springs. This shallower saline water zone is also evident from 

the interface map based on transient electromagnetic data (Figs. 11 and 12). 

Encroachment of sea water by means of conduit flow within the karstic lime­

stone aquifer may account for the interface reentrant in this area. The 

reentrant extends about five to eight miles inland along a SE trend. 

Crystal River Reentrant 

Transient EM data indicate a major reentrant near Crystal River 

(Figs. 11 and 12). High chlorides in well 47 (Fig. lZ) support this inter­

pretation. The Crystal Springs are first and second magnitude springs 

which discharge large quantities of fresh water into the Crystal River. 

The river is dominated by tidal influx, however, and brackish conditions 

exist far upriver. Net flow is often upstream, especially during spring 

high tides and high energy events such as storm surges (Cherry, et al., 1970). 

Salt water is able to infiltrate the aquifer far inland to contribute to 

the maintenance of the interface reentrant. The low ground water potential 
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results in a shallow interface seaward of Crystal Springs. The interface 

depth contours are consistent with the observed concentration of discharge 

at the springs. The interface reentrant has been observed by Fretwell (1978) 

and Stewart (1981). It extends about five to six km inland along a roughly 

SE trend. 

Barge Canal Reentrant 

A major interface reentrant is indicated at or just south of the 

Cross Florida Barge Canal and Lake Rousseau (Figs. 11 and 12). The exact 

location of the reentrant is uncertain, however, because data density is 

low in this area. Also, no additional geophysical or geochemical support 

for the reentrant is available. It is expected that the Barge Canal and 

Lake Rousseau would influence the position of the reentrant. If the 

reentrant is south of the canal, however, some additional influence must 

be sought as well. Conduit flow may allow the infiltration of sea water 

in this area. Further research is needed to interpret the reentrant 

satisfactorily. 

Noise 

Good solutions for apparent resistivities in the first 4 or 5 channels 

were unobtainable for about one-third of the soundings. Figure 19 is an 

example of this problem. The problem is the result of nearby, non-geologic 

conductors. Induction in these conductors results in the extension of 

lIintermediate-time ll • The use of an aliminum lawn chair during the first 

week of field work contributed to a number of poor solutions in Hernando County. 
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Other sites were affected by metal fences and power lines. Although 

the EM 37 is synchronized to standard 60 Hertz power line circuits, the 

wires act as conductors and produce noise by extending lIintermediate-time ll • 

Reliability of Sounding Solutions 

Ideally, the theoretical apparent resistivity curve should exactly 

match the actual field curve. It is useful to know the degree by which 

the curve parameters must differ in order to distinguish the curves 

visually. Figure 20 illustrates the effects on curve shape of a plus-

or-minus 10 percent variation in upper layer thickness. Figures 21 and 22 

illustrate the effects of 10 percent variations in second layer resistivity 

and second layer thickness, respectively. In each case, the curves are 

easily distinguished. Second layer resistivity and thickness have a greater 

effect on curve shape, however, than does first layer thickness. Interpretation 

of second layer parameters appears to be more reliable. 

Most of the field curves and theoretical curves produced in this 

study exhibit much better agreement'than do the curves in Figures 20, 21, and 

22. Solutions for these soundings are considered to be well within the 10 

percent of actual field values. 

The problem of equivalence arises with the simultaneous variation of 

two parameters. This is illustrated in Figure 23 where the simultaneous 

increase of both second layer thickness and resistivity can produce a nearly 

identical curve. Mallick and Verma (1979) show that the root mean square 

difference between alternate solutions reaches a minimum not equal to zero, 

however. Theoretically, all soundings should be resolvable, but practical 
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considerations limit the ability to distinguish between similar curves .. Partial 

knowledge of the subsurface geology may aid interpretation. 

CONCLUSIONS 

Method Evaluation 

The transient electromagnetic method enjoys several advantages over other 

methods currently used to monitor the salt water-fresh water interface. Pene­

tration to depths up to 500 meters is possible without reliance on the excessively 

long electrode spacings and wires characteristic of direct current surveys. 

Electrodes are unnecessary as current is introduced into the ground by induction. 

This fact makes electromagnetic methods especially attractive in areas where 

surface conductivity is low, and introduction of current by electrodes is 

inefficient. Low frequency transient EM also provides better resolution 

than DC (Kaufman, 1978). Anisotropy is not a problem in horizontal strata, 

because current flow is always horizontal (McNeill, 1980a). 

A few disadvantages are inherent'to transient EM methods. Interpretation 

is more involved, and some technical training is required. The method is 

ineffective for shallow studies (depths less than 50 meters). Other EM methods 

and the DC method are complementary in this respect, as their practical use 

is limited to shallow surveys. 

Transient EM survey costs are only slighly higher than DC costs. The 

EM 37 instrument rental cost is $2400 per week. A two-person field crew can 

complete 6 soundings per day (30 per week) for a cost of $80 for the instrument 

plus labor costs of $40 per sounding. Interpretation averages 2 hours ($30 
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for labor) plus $35 for computer time per sounding. Total personnel, instru­

ment, and computer cost is $185 (1982 dollars) per sounding. Fretwell and 

Stewart (1981) completed a direct current survey involving 28 soundings at 

a cost of $3150 or $112 (1978 dollars) per sounding. The EM 27 purchase 

price is $85000 (1982, Canadian). Ignoring maintenance and shipping costs, 

the instrument will pay for itself over rental costs after 35 weeks of field 

use (assuming an even rate of exchange). 

Recommendations 

Efficient field work is facilitated by advance site selection and 

adherence to the following simple guidelines. All potential sites should 

be thoroughly reconnoitered and potential noise sources noted. The field 

crew should insure against the introduction of additional noise sources 

such as metal chairs, radios, vehicles, etc. An 80 meter square transmitter 

loop is adequate for detection of the interface in the Coastal Rivers and 

Withlacoochee Basins, Florida. The 3 Hertz transmitter frequency does not 

contribute any significant additional. information, and the signal to noise 

ratio is unacceptable for reasonable integration times. The use of this 

frequency is not recommended. The ideal field crew consists of two persons. 

One person lays out the transmitter loop while the other prepares the transmitter 

and receiver units. Triplicate readings should be taken for each channel at 

each sounding site. 

The transient electromagnetic method is ideally suited to the location 

of deeper portions of the salt water-fresh water interface. Additional 

research is indicated i-n Hernando County and in the vicinity of the 
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Cross Florida Barge Canal and Lake Rousseau. The position and shape of the 

interface are poorly understood in these areas. Smaller transmitter loop 

sizes may be adequate seaward of US Highway 19 where the interface is 

closer to the surface. The results from such studies would be more 

directly comparable to DC data. Seasonal variation of the interface position 

should be monitored. Increased data density would better define the inter­

face reentrants and assist in the selection of future chloride monitor well 

sites. 
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