Research papers

Variation of overtides by wave enhanced bottom drag in a North Florida tidal inlet

I. Safak*, A. Sheremet, A. Valle-Levinson, A.F. Waterhouse

Department of Civil and Coastal Engineering, University of Florida, 365 Weil Hall, P.O. Box 116590, Gainesville, FL 32611, USA

Abstract

Month-long observations of waves and tidal currents at Ponce de Leon Inlet, North Florida are used to investigate the importance of wave-induced bottom drag as a mechanism for overtide generation in estuaries. While bottom drag can in theory lead to overtide generation, in practice, resolving unambiguously this effect is difficult as it tends to be overshadowed by the stronger effect of diurnal-semidiurnal tidal variance. Bottom boundary layer numerical simulations based on observational data suggest that waves can cause the bottom drag experienced by currents to increase by a factor of 1.7, compared with relatively calm conditions. Despite the relatively short duration and limited scope of the experiment, the analysis suggests that overtide modulations (East–West velocity components of the 5th and 6th diurnal constituents) are correlated with wave-enhanced drag trends. Therefore, wave-enhanced bottom drags may be enhancing generation of overtides. Further work is necessary to understand the scope and the strength of this mechanism, in relation to the characteristics (e.g., flow direction) of individual overtides.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Surface gravity waves are known to affect the circulation in shallow estuaries by slowing down the flow (Signell et al., 1990), and modifying the near-bed Reynolds stresses (Bricker et al., 2005). In general, bottom boundary layer processes associated with surface waves, such as near-bed turbulence (e.g., Grant and Madsen, 1979, 1986), generation of sand ripples (e.g., Nielsen, 1992), and near-bed sheet flows (e.g., Styles and Glenn, 2000), increase the bottom drag experienced by currents in coastal shallow waters and estuaries. On a larger temporal scale, tidal distortions (overtides associated with tidal asymmetries) play an important role in the long-term inlet and channel morphodynamics in estuaries (Friedrichs and Aubrey, 1994) and can induce tidal-residual flow in coastal lagoons. The relation between bottom drag variability and overtide generation has been hypothesized (Parker, 1991) and demonstrated (e.g., Dworak and Gomez-Valdes, 2005), but the possible connection between wave-induced bottom drag and overtide generation has not been investigated in depth.

Overtide generation is associated with the nonlinearities of the governing equations. In a flat-bottom, straight tidal channel of constant width and constant depth h, the evolution of the surface elevation η and along-channel, vertically integrated velocity u is governed by the shallow-water equations for mass and momentum conservation

$$\frac{\partial \eta}{\partial t} + h \frac{\partial u}{\partial x} = \frac{\partial}{\partial x} (\frac{\partial}{\partial x} u),$$

$$\frac{\partial u}{\partial t} + g \frac{\partial \eta}{\partial x} = -u \frac{\partial}{\partial x} C_d \frac{u|u|}{h+\eta},$$

where t is the time, x is the along-channel distance, g is the gravitational acceleration, and C_d is the bottom drag coefficient. The effects of Earth’s rotation and horizontal turbulence are neglected. The nonlinear terms on the right-hand side of these equations (nonlinear continuity term in Eq. (1), advective term and quadratic bottom friction term in Eq. (2)) are responsible for the generation of harmonics of the fundamental tidal signal (overtides), and a zero-frequency residual (Parker, 2007). Substituting into Eqs. (1) and (2) the Fourier series

$$u(t), \eta(t) = \sum_{n=\pm\infty} A_n(t) \exp(i\omega_n t),$$

with $\omega_n = \omega_n, A_n = A_n, U_n = U_n$ (asterisk denotes complex conjugation) and ϵt a slow time dependence (ϵ being a small parameter of the problem, e.g., tidal amplitude over depth), transforms the nonlinear terms to the generic form

$$\frac{\partial^2 \eta_n}{\partial \epsilon^2} = \sum_{n',n''} T_{n,n'} U_{n'} \delta_{p Q} U_{n''} \delta_{p', q},$$

where $T_{n,n'}$ is a matrix that depends on the properties of the flow and the channel geometry.
where δ is the Kronecker symbol, and T_{ijpq} is an interaction coefficient depending in general on the frequency of the interacting components. One of the effects of the nonlinear terms is the transfer of variance between the different spectral modes. If indices p and q are positive, their interaction contributes to the harmonic $n = p + q$.

For example, sum interaction of the semi-diurnal tide M_2 with itself, i.e., $o_2 = o_2 = 2\pi/(12.42 \text{ h})$, generates the fourth-diurnal tide M_4 with $o_4 = o_2 + o_2 = 2\pi/(6.21 \text{ h})$; sum interaction of M_2 with M_4, i.e., $o_2 = 2\pi/(12.42 \text{ h})$ and $o_4 = 2\pi/(6.21 \text{ h})$, generates the sixth-diurnal tide M_6 with $o_6 = o_2 + o_4 = 2\pi/(4.14 \text{ h})$, etc. Thus, a harmonic “exists” in Eqs. (1) and (2) independent of whether it has detectable variance, and independent of the mechanism that generates it. Following the conceptual model (Eq. (4)), the term “harmonic” will be used in this study together with the term “overtides” to denote a sum of two frequencies (e.g., integer multiples of the diurnal frequency) in the Fourier representation.

The conceptual model (Eq. (4)) shows that the efficiency of nonlinear spectral transfers depends on the variance of the forcing $p-q$ modes (right-hand side of Eq. (4)), and the magnitude of the interaction coefficient T_{ijpq}. Because the variability of T_{ijpq} is weak, the interaction coefficients are typically assumed constant. However, this is not necessarily the case for the bottom drag coefficient C_D in Eq. (2), as bottom drag can vary because of external influences (e.g., bottom sediment, vegetation, internal turbulence). The nonlinear term in Eq. (4) scales linearly with the drag coefficient, and is quadratic in amplitudes. This implies that drag variability has an inherently weaker expression on overtide modulation than the spectral variability of density. For example, in the dominant second harmonic generation (self-interaction $p=q$), a factor of 2 increase in the amplitude of mode p increases the nonlinear term by a factor of 4. Therefore, the overtide generation effect of waves through enhanced bottom drag could be detected in favorable conditions, e.g., characterized by low tidal variance and energetic wave-induced bottom turbulence. This mechanism is investigated herein, based on a 1-month data set collected in Ponce de Leon Inlet, Florida by using a bottom boundary layer model and applying tidal analysis.

2. Field experiment

Currents and waves were measured between December 14th, 2007 and January 14th, 2008, in Ponce de Leon Inlet in the Atlantic Coast of Florida, USA using a 1228.8 kHz Acoustic Doppler Current Profiler (ADCP, Teledyne RD Instruments). The ADCP was deployed at the lagoon to the south of the inlet mouth, pointing upward, in about 3-m water depth (Fig. 1a). The built-in pressure sensor of the instrument was located at 0.40 m above the bottom (mab). The ADCP sampled velocity in 50-cm bins, with the lowest bin centered at 1.05-m distance from the transducer. Valid measurements were therefore recorded only at the two lowest measurement bins (centered at 1.45 and 1.95 mab, respectively). The 1.45-mab bin was below the water surface during the entire duration of the experiment; part of the 1.95-mab bin was above the water surface during January 12–13, 2008. Both measurement points were well outside of the wave boundary layer, which is a few cm thick and therefore much thinner than the current boundary layer which scales with water depth (e.g., Fredsoe and Deigaard, 1992). Because the numerical model used here (Styles and Glenn, 2000, see Section 3) requires a single current measurement point, our discussion will focus on the 1.45-mab (lowest bin) observations.

The ADCP sampled flow velocity at 1.5-s pings, and recorded 10-min averages (400 velocity samples). One-hour averages of the velocity observations were transformed to North-South (positive northward) and East-West (positive eastward) coordinate frame. Wave observations combined 17-min/h measurements of pressure, acoustic surface track and velocity profiles (sampled at 2-Hz, 2048 samples per burst) to estimate the wave directional spectrum at frequency resolution $\Delta f = 0.0078 \text{ Hz}$ and angular resolution $\Delta \theta = 4^\circ$. The measured spectra were converted to the spectral estimates at the surface by applying a linear transfer function (e.g., Dean and Dalrymple, 1991). For this, the wave-number k was calculated through the linear dispersion relationship which accounts for the effect of tidal current on waves (Kirby and Chen, 1989; Smith, 2002):

$$2\pi f = k U \cos(\xi - \alpha) + \sqrt{g k \tanh(kh)},$$

where U is the current speed, ξ is the current direction, and z is the wave direction. Due to wave attenuation with depth, observations of bottom pressure cannot resolve high-frequency spectral bands. Here, frequency bands with variance at sensor < 2% of surface variance were assumed to follow the f^{-5} spectral tail law (Phillips, 1958). Directional spectra produced by the wave processing packages WavesMon and WaveView (Teledyne RD Instruments) were cross-checked against pressure data by

Fig. 1. Experiment site, and time evolution of the tidal observations. (a) Top view of Ponce de Leon Inlet, Florida. The “x” indicates the location of the ADCP. (b) One-hour averages of North–South (thin line, positive northward) and East–West (thick line, positive eastward) components of current velocity. (c) Mean water depth at the measurement location.
comparing wave heights and peak frequencies. A summary of the observations is shown in Figs. 1–3. Due to the geography of the inlet at the location of the ADCP (Fig. 1a), the North–South velocity component was dominant (Fig. 1b). During ebb and flood, the main direction of the current was rotated approximately 10° clockwise from the North–South axis. A period of relatively higher current velocities (December 23–27th, 2007) was associated with spring tides (Figs. 1b and c), characterized by tidal ranges of 4.2 m, resulting in water depth variations between 2.2 and 3.8 m. Remarkably, together with locally generated short waves (period of about 5 s), swell (7–10 s) was often present in the observations, and even infragravity waves (period >20 s) which suggests a combination of locally generated short waves and coastal ocean waves propagating through the inlet (Fig. 2a). Due to the geometry of the inlet, the dominant wave direction at the location of the sensor was approximately from the North-Northeast sector throughout the experiment (Fig. 2b). Wave height was strongly modulated by the tide level (e.g., Fig. 1c), with larger waves occurring during high tide. Wave height was typically between 15 and 20 cm (Fig. 3a), with a slightly more energetic and better organized wave-field observed during the second half of the experiment. Frequency peaks also indicate the presence of swell and locally generated short waves (Fig. 3b).

3. Results

3.1. Bottom stress and drag coefficient

The drag coefficient can be estimated from its relation with the bottom stress, $t_b = \frac{1}{2} \rho C_d U^2$, equivalent to $C_d = \left(\frac{u^*}{U} \right)^2$, where u^* is the bottom friction velocity, and ρ is the density of water. The lack of near-bed velocity observations (measurement points are 1.45 mab and above) precludes direct estimation of wave-induced bottom stress from data, for example by fitting a logarithmic profile to the vertical profile of the current (e.g., Lueck and Lu, 2010).
Methods developed for estimating Reynolds stress are generally based on the use of cross-correlation of horizontal and vertical velocity fluctuations. Methods which use ADCP along-beam velocities but do not account for wave-bias (e.g., Lohrmann et al., 1997) can severely overestimate Reynolds stresses in a wave-dominated environment. Eliminating wave-bias from Reynolds stress estimates usually requires either strong additional assumptions – when using a single point measurement (e.g., Bricker and Monismith, 2007) – or an elaborate experimental setup with multiple measurement points carefully chosen (e.g., Shaw and Trowbridge, 2001; Rosman et al., 2008). In addition, any of these methods can only provide estimates of the stress at the measurement location. Further assumptions (models), e.g., about bottom roughness values, are often needed to relate these Reynolds stress estimates to the bottom stress τ_b.

Current measurements from a single point in the water column (located at 1.45 mab) can be considered misleading to get results related to wave-induced friction. Therefore, a numerical model which requires current measurements only at a single point in the water column to account for wave–current interaction on the bottom boundary layers above sandy beds is used (Styles and Glenn, 2000). In this model, turbulence closure is achieved by a time-invariant eddy viscosity profile, and bottom drag is accounted for in these calculations with the default representation of these processes implemented in the model. For the wave–current conditions in the present data set, the model is representative of the averaged bottom drag and wave effects yield

$$X = \frac{H_s}{C_0},$$

and λ is a nondimensional parameter defined as $X = \theta_m/S$, where θ_m is the mobility number which is the ratio of the wave-induced disturbing force to the stabilising force due to gravity, and S is the nondimensional sediment parameter, respectively (Nielsen, 1992):

$$\frac{\nu^2}{(s-1) g d}, \quad S = \frac{d}{\sqrt[4]{(s-1) g d}}.$$

where ν is the kinematic viscosity of water. Fig. 3c shows estimates of the bottom drag coefficient (C_d) based on the Styles and Glenn (2000) model. Numerical simulations that neglect wave effects yield $C_d = 3.0 \times 10^{-3}$. When wave effects are taken into account, observations separate into two groups (black and grey symbols in Fig. 3): one characterized by large wave average $C_d = 3.2 \times 10^{-3}$ (black symbols); the other yielding an average value about 1.7 times larger, $C_d = 5.5 \times 10^{-3}$ (grey symbols). High drag values are associated with relatively higher wave heights (Fig. 3a) and lower peak frequencies (Fig. 3b). Large wave heights and low frequencies seem to be equally important: 90% of the measurement bursts associated with the increased bottom drag are characterized by waves with $H_s > 0.15$ m and $f_p < 0.25$ Hz. For high and low drag events, there is no clear separation depending on ebb (black and grey crosses in Fig. 3) and flood (black and grey dots in Fig. 3) phases of the tide in the inlet.

There was no instrumentation available to observe bedform evolution and the structure of the bottom boundary layer flow. Nonetheless, the effect of sand ripples and sheet flows on bottom drag is accounted for in these calculations with the default representation of these processes implemented in the model. For the wave–current conditions in the present data set, the model is representative of the averaged bottom drag and wave effects yield

$$X = \frac{H_s}{C_0},$$

and λ is a nondimensional parameter defined as $X = \theta_m/S$, where θ_m is the mobility number which is the ratio of the wave-induced disturbing force to the stabilising force due to gravity, and S is the nondimensional sediment parameter, respectively (Nielsen, 1992):

$$\frac{\nu^2}{(s-1) g d}, \quad S = \frac{d}{\sqrt[4]{(s-1) g d}}.$$

3.2. Tide analysis

Fig. 5 shows the results of a harmonic analysis using the software package T_TIDE (Pawlowicz et al., 2002) based on mean currents, which includes (Rayleigh criterion 1.0) 29 tidal constituents: the fortnightly component, eight diurnal, four semidiurnal, and 16 components with frequencies higher than the semidiurnals. Only the significant constituents, with the squared ratio of amplitude to the error in amplitude greater than 1, are shown. This was satisfied by 11 and 17 constituents for North–South and East–West, respectively. For both components, the tidal components M_2, N_2, and K_1 dominate the signal, and the fourth diurnal constituent M_4 with a frequency of about 3.86 cycles per day (cpd) is the over tide with the highest amplitude. Together with the T_TIDE amplitude spectrum, the Fourier amplitude spectrum (10 degrees of freedom) is also shown in Fig. 5. The regular Fourier analysis provides an estimate of the variance of tidal constituents over the entire duration of the experiment. Investigating the evolution of specific constituents
require time–frequency analysis techniques such as the "complex
demodulation" method (e.g., Dworak and Gomez-Valdes, 2005),
or complete orthogonal decomposition approaches such as the
Gabor or wavelet transforms (e.g., Carmona et al., 1998). The
Gabor transform used here has the advantage that it is closely
related to the traditional Fourier analysis and explains completely
the variance of the signal. The decomposition is calculated with a
sliding 100-h window (roughly 26 periods of the
M_4 harmonic) and 98% overlap. The resulting time–frequency analysis yields a
51-point frequency grid (increment $\Delta f = 0.24$ cpd) and 323 time
points with increment $\Delta t = 2$ h. To simplify the discussion of the
results of this analysis, frequency bands will be referred to as
"diurnal harmonics", based on the relation between their center
frequency and the diurnal frequency. The term is meant to denote
spectral modes with frequencies multiple of the diurnal
frequency, with no reference to a particular generation mechan-
ism. These bands contain, but should not be identified with, tidal
constituents such as M_3, M_4, and others.

The main goal of this analysis is to identify trends that are
common to overtide and wave-induced drag variability. As
discussed in Section 1, the evolution of harmonic n (conceptual
model equation (4)) is primarily governed by the variance at all
lower frequencies (right-hand side modes p and q). For example,
the 6th diurnal harmonic ($n=6f_0$, with f_0 frequency of the diurnal
constituent) is modulated by the variance in all lower frequency
bands (all modes p and q, such that $p+q=n$). However, the
semidiurnal band dominates the spectrum by accounting for, on
average, 92% and 81% of the total variance at the frequencies
$f < 2.2$ cpd for North–South and East–West components of
velocity, respectively (Fig. 5). Therefore, we will restrict our
estimate of the forcing variance to the semidiurnal band.

The semidiurnal variability is expected to be too strong, most
of the time, to allow for the detection of drag-variability effects on
overtides. Even if the variance forcing is weak, and waves are high
(bottom drag effect is strong), it will still be difficult to identify
the drag effect if the evolution trends of the drag and variance
components of the forcing are similar. Therefore, it is hypothe-
sized that optimal conditions for the detection of overtide
modulation by bottom drag are realized when the variance of
the semidiurnal band is low, waves are energetic (wave-induced
drag is high), and the trends of bottom drag and semidiurnal
variance are distinct.

Visual inspection of the North–South velocity component of
overtides does not suggest a significant correlation with the
bottom drag and therefore, North–South velocity components are
not discussed here. All East–West components of diurnal
harmonics (Figs. 6a–d) correlate with the semidiurnal variance
(Fig. 6f) in the first half of the experiment. In particular, the
frequency bands corresponding to the 3rd and 4th diurnal
harmonics (bands that include the M_3 and M_4 constituents;
Figs. 6a and b) follow the variance trends throughout the
experiment, including the spring tide peak on December 24th
(Fig. 6f, labelled “Variance”), as well as the smaller pulse starting
on January 3rd. The fact that the initial increase observed in the
drag coefficient (starting on December 19th; Fig. 6e) coincides
with the beginning of the first spring tide during this month.
reduces the chances of detecting the drag effects in the first half of the experiment period. However, during the second half of the experiment (January 1st to January 13th, labelled “Bottom drag” in Fig. 6), conditions became favorable for observing a possible contribution of the drag effects: tidal current amplitudes were smaller during that period due to the apogee–perigee effect, while the bottom drag increased by about 12% compared to the first half of the experiment (labelled “Variance”). During this period, the 5th and 6th diurnal harmonics have trends different than the 3rd and the 4th diurnal harmonics in the sense that they do not follow the pulse of increasing variance starting on January 3rd. Especially, the 5th diurnal harmonic does appear to follow the increasing drag trend (Fig. 6).

The correlations between overtide amplitudes and semidiurnal variance, and the correlations between overtide amplitudes and wave-induced drag are calculated with running windows of size varying between 100 and 300 h. The correlations show the same trend, however, those that are calculated with a 100-h window are rather noisy. The 150- and 200-h windows show a smooth and consistent evolution trend, therefore the time evolution of the correlations for 200-h window are presented in Fig. 7. All East–West components of diurnal harmonics show high correlation values with semidiurnal variance during the first half of the experiment. The high correlations with the bottom drag are most likely due to the dominant effect of increasing semidiurnal variance associated with the spring tide, rather than the increase of the bottom drag (hence the label “Variance”, Fig. 7). This is also supported by the very high correlation with the variance maintained by the frequency bands corresponding to the 3rd and 4th diurnal harmonics (including M_3 and M_4) throughout the entire experiment (Figs. 7a and b).

For the 5th and 6th harmonics, however, the correlations in the second half of the experiment (label “Bottom drag”, Figs. 6 and 7) show a significantly different behaviour. The velocity amplitudes of these two harmonics show a positive correlation with bottom drag, indicating similar growth-decay trends, while negatively correlated with the semidiurnal variance (opposite growth-decay trends). While the correlation coefficients are not particularly high (maxima slightly above 0.5, Figs. 7c and d), the opposite trends suggest that, during this period, bottom friction dominates the evolution of these harmonics.

4. Discussion

Observations of waves and tidal currents in 3-m depth, near the Ponce de Leon Inlet were used to investigate the importance of wave-induced bottom drag as a mechanism for overtide generation. The effect is difficult to observe in general, as it tends to be masked by the stronger effect of tidal current amplitude, and should exhibit a distinct trend for an unambiguous detection. Identifying processes related to wave-induced bottom drag is complicated by the fact that drag-induced modulation is intrinsically weaker than the modulation by tide/overtide variance, and that its effects depend critically on the structure of the wave field (wave period, energy and direction).

Despite the limited scope of the data used (e.g., duration of deployment, spatial coverage, etc.), the analysis suggests that if wave
activity is energetic enough (in this experiment, effective wave-fields had periods \(4s\) and heights \(415\) cm) it can cause a consistent increase (70% on average herein) in the bottom drag experienced by currents (Fig. 3). Results derived from applying a windowing analysis process (windowed correlation and Fourier transform) suggest that wave-induced drag can enhance nonlinear effects that generate tidal harmonics at frequencies higher than semidiurnal frequency. Different harmonics seem to be affected to different degrees by bottom drag variability. In this particular experiment, observations were unambiguous only for the East–West component of the velocity for two of the four harmonics analyzed. The reason for this selective effect is not clear. One may speculate that in this experiment, because the main flow is along North–South axis, the modulation due to the variability of semidiurnal amplitudes dominates the North–South component of overides but is less effective in modulating the East–West component. In contrast, wave-induced bottom drag has a weak directional variability, increasing only by approximately 2% if waves are assumed to propagate in the direction of the current. Due to scale separation effects (e.g., decay of variance with frequency, resulting in weaker interaction between widely different frequencies), higher harmonics should be less influenced by diurnal–semidiurnal variability, and more by wave-enhanced drag effects.

The observations presented here suggest the hypothesis that wave-generated bed processes (bed ripples) induce bottom-dr**ag variability that could be significant enough to result in nonlinear overtide generation. The limits of the data set (e.g., measurement of currents at a single point in the water column) have forced the results to be based mostly on the bottom drag calculations of a boundary layer model which accounts for wave–current interaction. Using a more sophisticated combined wave-tide model or a 3-D circulation model in order to reproduce the observations would be useful to evaluate the findings, however, such an approach is a major modeling effort and would have its own uncertainties here (e.g., unknown boundary conditions due to limits of the data set). The lateral inertia and curvature effects at the measurement point could possibly enhance the nonlinearities and overtide generation especially during spring tides, however, these effects would probably not be related to conditions that result in a bottom drag increase, and therefore not mask bottom drag effects. A more systematic investigation of surface gravity waves as an overtide generating mechanism likely requires high temporal and spatial resolution observations of wave dynamics.

![Image](Fig. 6. Evolution of overtide amplitude (East–West component of velocity) of: (a) 3rd, (b) 4th, (c) 5th, and (d) 6th diurnal harmonics, compared with (e) running average of wave-induced bottom drag coefficient; and (f) evolution of the variance at the semidiurnal frequency band.)
bottom velocity structure, and associated bedforms, collected over a longer interval which may allow a comparison between similar tidal conditions but different wave conditions. Such an analysis is necessary to support the suggestive results obtained herein and motivate further related studies.

Acknowledgments

We would like to thank to three anonymous reviewers for their constructive suggestions which improved the original manuscript.

References

